Verifying the Origin of Everything with Binary Mathematical Physics and Buddhism

Suresh Wanayalaege
Data Analyst \& Researcher
Lanka E-World Technologies, Colombo, Sri Lanka, Email: suresh@ranrahas.com

Abstract

It's about a new type of mathematical discovery about the origin/existence of the universe. I have used modern scientific discoveries (E.g., quantum mechanics) and explanations about fundamental elements (quantum physics) in Buddhism to verify it. I researched about zero (0) to find the universe's origin. If zero is fundamental, then the continuation of zero (0) in infinity (∞) can emerge as dimensions between continued directions making relative dimensions. Meanwhile, it could continue as interactions of dimensions, making an emergence like the first universe. It's about verifying the root of everything using a theory about everything (particles, forces) while making predictions better than String Theory and M-Theory.

Keywords: Mathematical science of the origin, Quantum mechanics explained, Mathematical relationships in Abhidhamma, Astronomical discoveries explained, Quantum gravity explained.

1. INTRODUCTION

This new research area is entirely a new type of mathematical discovery about the origin of the first universe, which was developed-as a theory of mathematical symmetries or as symmetric laws in nature-using the most fundamental laws in the earliest possible universe. Surprisingly, scientific discoveries and Buddhism (Abhidhamma) helped me verify and continue the calculations. The earliest moment of nothingness (the universe's origin) could have been infinitely nothing as a relatively infinite moment until the symmetric laws made the dimensions in directions. "I wrote a book about the origin of the universe and Buddhist explanations about the universe, in 2020 *(1)". I researched it based on mathematical interactions of dimensional symmetries and the most fundamental technical aspects of the universe. This analyses it with a few extensions while introducing a structure for the fundamental particles to compare and explain the Standard Model of Elementary Particles in quantum physics, etc.

There are almost no motionless places in space as "the space is filled with fluctuations of energy fields/mass called quantum foam *(2)". "Virtual matter and antimatter appear and disappear in space *(3)". There are possibilities in the quantum levels that can make the disorder in the universe. And according to the second law of thermodynamics, entropy always increases. The interactions can make irreversible interactions. So, they would make the flow of time irreversible, even if those interactions are related. It seems that Time is an absolute fundamental phenomenon. And space and other energies look like fluctuations of Time between dimensions. Suppose we can understand how all the dimensions are combined mathematically, becoming the fundamental structures and time. In that case, we can easily understand that we don't need any unscientific explanation to explain the interactions of quantum objects/fields, etc.

The universe is a process. And that process is almost based on mathematical symmetries, probabilities, dimensions, etc. "Scientists could discover a lot of symmetric quantum interactions experimentally. And they helped scientists to predict the existence of more elementary particles (E.g., The Higgs Boson was proposed in 1964 by Peter Higgs. Discovered in 2012) *(4)". It suggests that quantum particles must follow rules of symmetric dimensional entanglements. This mathematical research is about the origin of the universe. And the results of it can help scientists conduct more experiments to find and verify the fundamentals of Quantum Mechanics, etc.

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com
If the first universe was A THING with nothings (nulls), then the direction of a nothing (0) thing $=+0-0$
According to this mathematical formula: $(a+b)^{\wedge} 2=a^{\wedge} 2+2 a b+b^{\wedge} 2$

$$
\begin{array}{lll}
(+0-0)^{\wedge} 2=0 \wedge 2-(+1-(-1)) \times 0 \times 0+0 \wedge 2 & \mid & (-0+0)^{\wedge} 2=0 \wedge 2+(-1-(+1)) \times 0 \times 0+0 \wedge 2 \\
=(+1-(-1)) \times 0 \wedge 2-(+1-(-1)) \times 0 \times 0 & \mid & =-(-1-(+1)) \times 0 \wedge 2+(-1-(+1)) \times 0 \times 0 \\
=(+1-(-1)) \times 0.0-(+1-(-1)) \times 0.0 & \mid & =-(-1-(+1)) \times 0.0+(-1-(+1)) \times 0.0 \\
=(+1-(-1)) \times(+0.0-0.0) & \mid & =(-1-(+1)) \times(-0.0+0.0) \\
(+0-0)^{\wedge} 6=(+0-0)^{\wedge} 2 \times(+0-0)^{\wedge} 2 \times(+0-0)^{\wedge} 2 \mid & (-0+0)^{\wedge} 6=(-0+0)^{\wedge} 2 \times(-0+0)^{\wedge} 2 \times(-0+0)^{\wedge} 2 \\
(+\mathbf{0}-\mathbf{0})^{\wedge} \mathbf{6}=(+\mathbf{1}-(-\mathbf{1}))^{\wedge} \mathbf{3} \times(+\mathbf{0 . 0 - 0 . 0})^{\wedge} \mathbf{3} & \mid & (\mathbf{- 0 + 0})^{\wedge} \mathbf{6}=(-\mathbf{1 - (+ 1)})^{\wedge} \mathbf{3} \times(-\mathbf{0 . 0}+\mathbf{0 . 0})^{\wedge} \mathbf{3}
\end{array}
$$

I apply this formula $(a+b)^{\wedge} 2=a^{\wedge} 2+2 a b+b^{\wedge} 2$ into this $(+0.0-0.0)^{\wedge} 3$ and this $(-0.0+0.0)^{\wedge} 3$ like that to get the subsequent simple outputs first (the first couple interaction (E.g.: (1x1)x1) as a separation of the symmetry):

$$
\begin{aligned}
& (+0.0-0.0)^{\wedge} 3=(+(1)-(-(1))) \times(0.000-0.000) \times(+0.0-0.0) \\
& (-0.0+0.0)^{\wedge} 3=(-(1)-(+(1))) \times(-0.000+0.000) \times(-0.0+0.0)
\end{aligned}
$$

There are a lot of things to explain about that output yet. We can get a fundamental and stable output from this first (+1-($1)^{\wedge} 3$ result as simple eight results. Seemingly they are like the eight absolute/elementary forms. Buddhism also mentioned eight simple elements called Pure Eight ('Suddhāṭthaka' in Pali). There are four fundamental units of forms/ghosts called 'Four Mahā Bhūta' and four more forms/bhūta called Gati/characters. Bhūta is another name for "ghosts" because of their elusive nature. *(5)"). I tried to make the calculations easier for the readers to understand the basic pattern and mathematical rules. I tried to simplify the calculations using extra steps, symbols, shapes, etc.

2. MATHEMATICAL SCIENCE AND BUDDHISM

There are dimensions in the universe that follow mathematical rules and steps. The steps in this calculation represent the highest possible dimensional interactions based on the natural laws of dimensions (directional moments) and most possible symmetries. And it is NOT based on a 4 or 5 -dimensional (4D or 5D) universe that already exists as spacetime, matter, forces, etc. A result of the calculation generally showed the existence of 4 main dimensions and 1 stable subdimension with 1 unstable sub-dimension that tried to split a dimension or rotate as 0.5 or ' $1 / 2 \mathrm{Spin}$ '. I could find sets of dimensional numbers in the calculation (like the numbers in elementary particles).

The universe was probably a THING even if it was infinitely nothing (a zero infinity) in the first relatively infinite moment. A thing must be in the six directions: up, down, left, right, forward, and back. And, it would continually go to zeros and infinities and come from there like filling the gaps and making things and new dimensions as moments of directions. We can use the properties at the start of a void-based universe to calculate the process in that universe. This new theory is about the beginning of the dimensions and the universe. The second moment of existence in the first universe was probably a result of separations of infinities. Those dimensional infinities continue in all directions and try to be symmetric between dimensions. As required, I applied 6 directions to remove that infinite nothingness in the first universe. It made 12 dimensions of directional/vector moments (E.g., $+6-6$ and/or $-6+6$). I used directions and the virtual gaps in the infinite nothingness to start the calculation to figure out the dimensional symmetry. E.g.:

The virtual gap in a linear zero (0) direction (E.g.: between left and right) $=(+0-0)$ AND/OR $(-0+0)$
The virtual gaps in the universal zero (0) that had linear 6 directions $=(+0-0)^{\wedge} 6$ AND/OR $(-0+0)^{\wedge} 6$
The Dirac equation showed the existence of antimatter in 1928. Also, it showed a matter-antimatter symmetry in the laws of nature. According to theories like that and scientific discoveries about symmetries in nature, we can generally say that there are two opposite symmetries in the universe called Matter and Antimatter. And they could emerge from two opposite symmetries like this:

Initial Matter AND/OR Antimatter: $\left\{(+0-0)^{\wedge} 6\right.$ AND/OR $\left.\left.(-0+0)^{\wedge} 6\right)\right\} \times n---$ ' n ' is an initial or derived number. $n>=1$
$=(+1-(-1))^{\wedge} 3 \mathrm{x}(+0.0-0.0)^{\wedge} 3$ AND/OR (Anti) $\left\{(-1-(+1))^{\wedge} 3 \mathrm{x}(-0.0+0.0)^{\wedge} 3\right\}$
If $n=1$ in the 1 st $n \times(-0+0)^{\wedge} 6$, $2 \mathrm{nd} n>=4 \times 3$ or $12+8$ in $n \times(+0.0-0.0)^{\wedge} 6$ as n removes infinities between 2,3 dimensions. The next 2 simple steps:

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com
$(+0-0)^{\wedge} 6=$ Step $(\mathbf{i}).\left\{(+1-(-1))^{\wedge} 3=(+1-(-1)) \times(+1-(-1)) \times(+1-(-1))\right.$
According to this mathematical formula: $(a+b)^{\wedge} 2=a^{\wedge} 2+2 a b+b^{\wedge} 2$
$=\left((+1)^{\wedge} 2-(+1-(-1)) x(+1) x(-1)+(-1)^{\wedge} 2\right) x(+1-(-1))$
$=\left((+1)^{\wedge} 2-(+1 \times(+1) \times(-1)-(-1) \times(+1) \times(-1))+(-1)^{\wedge} 2\right) \times(+1-(-1))$
$=\left((+1)^{\wedge} 2-\left((+1)^{\wedge} 2 \times(-1)-(-1)^{\wedge} 2 \times(+1)\right)+(-1)^{\wedge} 2\right) \times(+1-(-1))$
$=$ The first 4 elementary ghosts used around 3 dimensions in the universe: $\left((+1)^{\wedge} 2-\left((+1)^{\wedge} 2 \times(-1)-(-1)^{\wedge} 2 \times(+1)\right)+(-\right.$
1)^2) x '($+1-(-1)$) This 4th dimension causes it become 3 or 4-dimensional sets between the 6 dimensions.'
$=\left(+1 \times\left((+1)^{\wedge} 2-\left((+1)^{\wedge} 2 \times(-1)-(-1)^{\wedge} 2 \times(+1)\right)+(-1)^{\wedge} 2\right)-\left(-1 \times\left((+1)^{\wedge} 2-\left((+1)^{\wedge} 2 \times(-1)-(-1)^{\wedge} 2 \mathrm{x}(+1)\right)+(-1)^{\wedge} 2\right)\right)\right)$
$=\left((+1)^{\wedge} 2 \mathrm{x}(+1)-\left((+1)^{\wedge} 2 \mathrm{x}(-1) \mathrm{x}(+1)-(-1)^{\wedge} 2 \mathrm{x}(+1) \mathrm{x}(+1)\right)+(-1)^{\wedge} 2 \mathrm{x}(+1)-\left((+1)^{\wedge} 2 \mathrm{x}(-1)-\left((+1)^{\wedge} 2 \mathrm{x}(-1) \mathrm{x}(-1)-(-\right.\right.\right.$
1)^2 $\left.\left.\mathrm{x}(+1) \mathrm{x}(-1))+(-1)^{\wedge} 2 \times(-1)\right)\right)$
$=\left((+1)^{\wedge} 3-\left((+1)^{\wedge} 3 x(-1)-(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(-1)^{\wedge} 2 \times(+1)-\left((+1)^{\wedge} 2 \times(-1)-\left((+1)^{\wedge} 2 \times(-1)^{\wedge} 2-(-1)^{\wedge} 3 x(+1)\right)+(-1)^{\wedge} 3\right)\right)$
$=\left((+1)^{\wedge} 3-\left((+1)^{\wedge} 3 \times(-1)-(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(-1)^{\wedge} 2 \times(+1)-\left((+1)^{\wedge} 2 x(-1)-\left((+1)^{\wedge} 2 x(-1)^{\wedge} 2-(-1)^{\wedge} 3 x(+1)\right)+(-\right.\right.$
1)^3)) $\left.\mathrm{x}(+0.0-0.0)^{\wedge} 3=(+(1)-(-(1))) \times(0.000-0.000) \times(+0.0-0.0)\right\}$

Step (ii.)
Step (i) $=(+\mathbf{1 - (- 1)}){ }^{\wedge} \mathbf{3}=\mathbf{8}$ elementary ghosts
$\left(\right.$ Step (i)) $\mathrm{x}(+0.0-0.0)^{\wedge} 3=(+1-(-1))^{\wedge} 3 \mathrm{x}(+(1)-(-(1))) \mathrm{x}(0.000-0.000) \mathrm{x}(+0.0-0.0)$
$=8$ elementary ghosts $\mathrm{x}(+(1)-(-(1))) \times(0.000-0.000) \times(+0.0-0.0)$
$\left\{\left((+(1))(+1)^{\wedge} 3-\left((+(1))(+1)^{\wedge} 3 \times(-1)-(+(1))(-1)^{\wedge} 2 x(+1)^{\wedge} 2\right)+(+(1))(-1)^{\wedge} 2 \mathrm{x}(+1)\right.\right.$
$-\left((+(1))(+1)^{\wedge} 2 \times(-1)-\left((+(1))(+1)^{\wedge} 2 \times(-1)^{\wedge} 2-(+(1))(-1)^{\wedge} 3 \mathrm{x}(+1)\right)+(+(1))(-1)^{\wedge} 3\right)$
$-\left((-(1))(+1)^{\wedge} 3-\left((-(1))(+1)^{\wedge} 3 \mathrm{x}(-1)-(-(1))(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2\right)+(-(1))(-1)^{\wedge} 2 \mathrm{x}(+1)\right.$
$\left.\left.-\left((-(1))(+1)^{\wedge} 2 \times(-1)-\left((-(1))(+1)^{\wedge} 2 \times(-1)^{\wedge} 2-(-(1))(-1)^{\wedge} 3 \mathrm{x}(+1)\right)+(-(1))(-1)^{\wedge} 3\right)\right)\right)$
$\mathrm{x}(0.000-0.000) \mathrm{x}(+0.0-0.0)=16$ elementary ghosts $\mathrm{x}(0.000-0.000) \mathrm{x}(+0.0-0.0)\}$
Step (iii.) $=$ Step (ii) $\times(0.000-0.000) \times(+0.0-0.0)$

Before I continue the calculations, I like to compare a few scientific discoveries with a few details in Buddhism.

3. THE PURE EIGHT \& FIVE ORDERS IN NATURE AND SIMILAR SCIENTIFIC DISCOVERIES

According to Abhidhamma teachings in Buddhism, there are 8 fundamental elementary ghosts (invisible elements) called Pure Eight (Pali: Suddhāțṭhaka/ Sinhala: Shuddāshtaka), including 4 great fundamental 'invisible elements' (ghosts) and 4 elements with character/'Gati' of them. Just like that, we can see 8 elementary particles as two groups of particles in the 'Standard Model of Elementary Particles' (UP Quark, Down Quark, Electron, Electron Neutrino, and Gluon, Photon, Z Boson, W Boson) including the 4 force-carrying particles in the atoms. Indeed, those 8 elementary particles could emerge from those Pure Eight elements as two different groups of elementary particles.!

According to Buddhism, there are five orders or processes (like laws/norms in nature, or Pali: Niyama) which operate in the physical and mental realms. Utu Niyama (order of season/time and non-living matter.), Bija Niyama (order of germs and seeds.), Karma Niyama (order of act and result.), Dhamma Niyama (order of the norm.), Chitta Niyama (order of mind or psychic law.)

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com

4. SIMPLIFYING INTERACTIONS OF SUB-DIMENSIONS TO CONTINUE THE CALCULATION

I used a few symbols as a type of mathematical symbols for quick identification:
(i.) Up / Down: (+0.0-0.0) / ($-0.0+0.0)=\mathbf{1}_{-} . . /(\mathbf{1 / 1})$ OR $\mathbf{1}_{-}$..
(ii.) $(+0.0000000-0.0000000) /(-0.0000000+0.0000000)=1 x(7 / 7)$ OR 1....
(iii.) $(+0.00-0.00) \times(+0.00-0.00)=0.00^{\wedge} 2-(\mathbf{1} \times 1) \times 0.00 \times 0.00+.0.00^{\wedge} 2$
(iv.) $(0.00000+0.00000)=\mathbf{2} . \ldots . . . \times 0.00000=\mathbf{1}$. x $\mathbf{1} \times 2.00000\{" "=$ against 6 zeros $\}$
(v.) 1...... / 1......x(5/5) = Neutral(......) / NEUTRAL(......) OR Null

Applying the new dimensional mathematical rules to the calculation
The Most Possible or Probable Outputs of this $(+0.000-0.000) \times(+0.0-0.0)$:
$(+0.000-0.000) \mathrm{x}(+0.0-0.0)=(+0.0-0.0) \mathrm{x}(0) \mathrm{x}(0) \mathrm{x}(+0.0-0.0)---(\mathrm{A})$
$(-0.000+0.000) \times(-0.0+0.0)=(-0.0+0.0) \times(0) \times(0) \times(-0.0+0.0)----A n t i(\mathrm{~A})$ or from newest $0.0,0.00,0.000$ origins
$(+0.000-0.000) \mathrm{x}(+0.0-0.0)==(+0.00-0.00) \times(+0.00-0.00)$
$(+0.000-0.000) \times(+0.0-0.0)=(+0.000 /(0)-0.000 /(0)) \times(+0.0-0.0) \times(0)---(\mathrm{B})$
From (A) and Anti(A) as an interaction with Anti(A)):
$(+0.000-0.000) \times(+0.0-0.0) /(-0.0+0.0)=(+0.0-0.0) \times(0) \times(0) \times(+0.0-0.0) /(-0.0+0.0)$
$(+0.000-0.000) \times 1 _. . /(\mathbf{1} / \mathbf{1})=(+0.0-0.0) \times(0) \times(0) \times 1 . . x(1 / 1)----(\mathrm{P})$
$\left((+0.000-0.000) \times 1 _. . /(1 / 1)\right) /((0) \times 1 . . x(1 / 1))=(+0.0-0.0) \times(0)----(\mathrm{C})$
From (B) and (C):
$(+\mathbf{0 . 0 0 0}-\mathbf{0 . 0 0 0}) \times(+0.0-0.0)=(+0.000 /(0)-0.000 /(0)) \times\left((+\mathbf{0 . 0 0 0} \mathbf{- 0 . 0 0 0}) \times 1 _. . /(1 / 1)\right) /((0) \times 1 . . x(1 / 1))---(B C)$
Interaction of $(-0.000+0.000)$ in Anti(A) with $(B C)$:
$\mathbf{1} \quad . . . /(\mathbf{3} / \mathbf{3}) \times(+0.0-0.0)=(+0.000 /(0)-0.000 /(0)) \times\left(\mathbf{1} x(\mathbf{3} / \mathbf{3}) \times 1 _. . /(1 / 1)\right) /((0) \times 1 . . x(1 / 1))$
$(+0.000 /(0)-0.000 /(0)) \times\left(\mathbf{1} x(\mathbf{3} / \mathbf{3}) \times 1 _. . /(1 / 1)\right) /(0)=1 _\ldots . . /(\mathbf{3} / \mathbf{3}) \times(+0.0-0.0) \times 1 . . x(1 / 1)---(\mathrm{Q})$
$(+0.000 /(0)-0.000 /(0))=\mathbf{1}_{-} . . . /(\mathbf{3} / \mathbf{3}) \times 1 . . x(1 / 1) \times(+0.0-0.0) \times(0) /\left(\mathbf{1} . . . \mathbf{x}(\mathbf{3} / \mathbf{3}) \times 1 _. . /(1 / 1)\right)---(\mathrm{D})$
From (B) and $(D)(O R(P)$ and $(Q))$:
$(+0.000-0.000) \times(+0.0-0.0)$
$=1 _\ldots . /(3 / 3) \times 1 . . x(1 / 1) \times(+0.0-0.0) \times(0) /\left(1 \ldots . . x(3 / 3) \times 1 _. . /(1 / 1)\right) \times(+0.0 x(0)-0.0 x(0))$
$=(+0.00-0.00) \times(+0.00-0.00) \times 1 _\ldots . /(3 / 3) \times 1 . . \mathrm{x}(1 / 1) /\left(1 \ldots . . . x(3 / 3) \times 1 _. . /(1 / 1)\right)$
Using this $(a+b)^{\wedge} 2=a^{\wedge} 2+2 a b+b^{\wedge} 2$ mathematical formula to get the Most Possible or Probable outputs of this result: $(+0.00-0.00) \times(+0.00-0.00) \times 1 _. . . /(3 / 3) \times 1 . . x(1 / 1) /\left(1 x(3 / 3) \times 11_{-} . /(1 / 1)\right)$
$=\left(0.00^{\wedge} 2-(+1 . \ldots . . .-(-1)) \times 0.00 \times 0.00+.0.00^{\wedge} 2\right) \times 1 _\ldots . /(3 / 3) \times 1 . . x(1 / 1) /\left(\mathbf{1} x(\mathbf{5} / \mathbf{5}) \times 1 _/(0 / 0) / \mathbf{2}\right)$
$=(0.00000 /(1 \ldots \ldots . . x(5 / 5))-(1 \ldots \ldots) x.(\operatorname{Neutral}(\ldots . .)) \times 0.00000+.0.00000 /(1 \ldots \ldots . . x(5 / 5))) \times 1 _\ldots . /(3 / 3) \times 1 . . x(1 / 1) /$
((NEUTRAL(......)) x 1_/(0/0)/2)
$=(0.00000 /(1 \ldots . . . x(5 / 5))+0.00000 /(1 \ldots . . . \mathrm{x}(5 / 5))-(1 \ldots . .) .\mathrm{x} 0.00000 \mathrm{x}(N e u t r a l(\ldots . .))) .\mathrm{x} 1_{-} \ldots . /(3 / 3) \mathrm{x} 1 . . \mathrm{x}(1 / \mathbf{1}) /$
((NEUTRAL(......)) x 1_/(0/0)/2)
$=((0.00000 /(1 \ldots . . . x(5 / 5))+0.00000 /(1 \ldots . . . x(5 / 5))) \times 1 . . x(1 / 1)-(1) \times 0.00000 \times.(\operatorname{Neutral}(\ldots . .)) \times .1 . . x(1 / 1)) \times 1 _\ldots /(3 / 3)$
/ ((NEUTRAL(......)) x 1_/(0/0)/2)

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com

Starting to use the 6th dimension as an unstable dimension while trying to be symmetric:
$(+0.000-0.000) \times(+0.0-0.0)=((0.00000 /(1 \ldots x(5 / 5))+0.00000 /(1 \ldots \ldots x(5 / 5))) \times 1 . . \mathrm{x}(1 / 1)-(+0.5 \ldots . . .-(-0.5 . \ldots . .)) \mathrm{x}$.
$1 . . x(1 / 1) \times 0.00000 \times(\operatorname{Neutral}(. . . .)).) \times 1 _. . . /(3 / 3) /\left((\operatorname{NEUTRAL}(.)) \times.\left(\right.\right.$ shared ..) $\left.\times 1 _/(0 / 0) / 2\right)$

1_..../(3/3) / ((NEUTRAL(......)) x (shared ..) x $\left.1 _/(0 / 0) / 2\right)$
OR
$=(+1 \ldots \ldots-(-1 \ldots \ldots)$, x $0.00000 /(1 \ldots \ldots x(5 / 5)) \times 1 . \ldots \ldots x(5 / 5)-(+0.5 \ldots \ldots .-(-0.5 \ldots . . .).) \times 1 \ldots \ldots x(5 / 5) \times 0.00000 \times(\operatorname{Neutral}(\ldots \ldots))$. x (shared) x 1_/(0/0)/4 / ((NEUTRAL(......)) x (shared ..) x 1_/(0/0)/2)

Continuing $+1 \ldots \ldots$ as $+1 \ldots . .$. or $+0.5 \ldots . . .-(-0.5 \ldots . .$.$) while merging with +0.5 \ldots . .-(-0.5 \ldots . .$.$) to balance:$
 (potential '..$/ \ldots$....' rotation) x $1 _/(0 / 0) / 4 /\left(\left(\right.\right.$ NEUTRAL(......)) x $\left.1 _/(0 / 0) / 2\right)$

Outputs of this $(+0.000-0.000) \times(+0.0-0.0)$:
 ../....) x $1 _/(0 / 0) / 4 /\left(\left(\right.\right.$ NEUTRAL(......)) x $\left.1 _/(0 / 0) / 2\right)$
 ((NEUTRAL(......)) x 1_/(0/0)/2)
$=(+\mathbf{0 . 5} \ldots . . .-(-\mathbf{0 . 5})) \times.(2, / 1 \ldots . . . x(5 / 5)-1 \ldots . . . x(5 / 5) \times(\operatorname{Neutral}(\ldots . .)).) \times \mathbf{1} _/(\mathbf{0} / \mathbf{0}) / \mathbf{4} /((\operatorname{NEUTRAL}(\ldots . .).) \times \mathbf{1} / /(\mathbf{0} / \mathbf{0}) / \mathbf{2}) \mathrm{x}$ $0.00000 \times$ (potential ../....)
$=(+0.5-(-0.5).) \times(2, / 1 \ldots . . . x(5 / 5)-1 \ldots . . . x(5 / 5) x(N e u t r a l(\ldots \ldots))) x.(N E U T R A L) / 4 /((N E U T R A L(\ldots . .)) x$. (NEUTRAL)/2) $\times 0.00000 \times($ potential ../....)
 ((NEUTRAL(......)) x (NEUTRAL)) x $0.00000 \times($ potential)
 ((NEUTRAL(......)) x (NEUTRAL)) x $0.00000 \times($ potential)

The most possible or probable dimensions with a balanced dimensional potential:
$=(+0.5 \ldots . . .-(-0.5 \ldots . . .)) \times .1 \times(2, / 3 / 1 \ldots \ldots x(5 / 5)-1 \ldots . . . x(5 / 5) / 3 \times(N e u t r a l(\ldots . .))) x.(N E U T R A L) /((N E U T R A L(\ldots . .)) x$. (NEUTRAL)) $\times 0.00000 \times($ potential ../....)
$=1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots)) x.(2, / 3 /(1 \ldots x(5 / 5))-1 \ldots . . . x(5 / 5) / 3 x(\operatorname{Neutral}(\ldots \ldots .))) x.($ NEUTRAL $) /(($ NEUTRAL (...... $)) x$ (NEUTRAL)) x $0.00000 \times($ potential ../....)
The final steps of the most possible outputs of this $(+0.000-0.000) \times(+0.0-0.0)$:
Step A. $)=1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots)) \times.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots \ldots x(5 / 5) / 3) \times 0.00000 \times($ potential $)$
Rotational Potential $=($ potential ../.... $)=\mathrm{R}$
Step B. $)=1 \times(+0.5 \ldots . . .-(-0.5 \ldots . .)) \times.(2, / 3 / 1 \ldots . . . \mathrm{x}(5 / 5)-1 \ldots . . . / 3) \times 0.00000 \times \mathbf{R}$
Using dimensional probabilities of the next moment (start) of this 0.00000 point for the calculations:
$0.00000=(-+0.000000+-0.00001$ Left \& Right $-+0.00001+-0.000000) \mid(-+0.000000+-0.00001$ Up \& Down -+0.00001
$+-0.000000) \mid(-+0.000000+-0.00001$ Forward \& Back $-+0.00001+-0.000000)$. It is like a new start.!
$==(-+0.0+-1 L \& R-+1+-0.0) \times 0^{\wedge} 5\left|(-+0.0+-1 U \& D-+1+-0.0) \times 0^{\wedge} 5\right|(-+0.0+-1 F \& B-+1+-0.0) \times 0^{\wedge} 5$
$=(-+0.0+-1-+1+-0.0) \times 0^{\wedge} 5(L R|U D| F B)$
Step C. $)=(1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots)) \times.(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))-1 \ldots . . / 3)) \times(-+0.0+-1-+1+-0.0) \times 0^{\wedge} 5(L R|U D| F B) \mathrm{R}$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com

OR
Step D. $)=(1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots)) \times(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . / 3)) \times(+-1-+0.0+-0.0-+1) \times 0^{\wedge} 5(L R|U D| F B) \mathrm{R}$
The most possible and important results will be used for the next levels of calculation. So this calculation $(+0-0)^{\wedge} 6=(+1-$ $(-1))^{\wedge} 3 \times(+(1)-(-(1))) \times(+0.000-0.000) \times(+0.0-0.0)$ continues as follows.
The result, briefly:
$(+0-0)^{\wedge} 6=\left((+1-(-1))^{\wedge} 3 \times(+(1)-(-(1)))\right) x((1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots)) x.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots \ldots . / 3))$
$\left.\mathrm{x}(+-1-+0.0+-0.0-+1) \mathrm{x} 0^{\wedge} 5(L R|U D| F B) \mathrm{R}\right)$
AND/OR (Anti)
$\left\{(-0+0)^{\wedge} 6=\left((-1-(+1))^{\wedge} 3 \times(-(1)-(+(1)))\right) \mathrm{x}(((-1) \mathrm{x}(-0.5 \ldots \ldots .-(+0.5 \ldots \ldots .)) .\mathrm{x}(-(-2, /-3 /(-1 \ldots \ldots \mathrm{x}(-5 /-5)))+(-1 \ldots \ldots) /-3))\right.$
$\left.\left.\mathrm{x}(-+1+-0.0-+0.0+-1) \mathrm{x} 0^{\wedge} 5(L R|U D| F B) \underline{\mathrm{R}}\right)\right\}$
Speculations about dimensional interactions and the nature of reality

- The calculation may help to explain the main structure(s) in the Mass of elementary particles, dimensional interactions of forces, or something like that. And to explain all the experimentally detected parameters and anomalies (including Axions, etc.) Also, we can try to connect Planck constants to dimensional structures.!
- There are no infinities in the calculation results, and it appears that the universe removes infinities itself by dimensional interactions.

5. FINDING THE FUNDAMENTAL PROCESS IN THE MIND WITH SCIENCE \& BUDDHISM

According to Abhidhamma, the mind continues (itself is) a paramount moment called the Chitta/mind moment (Cittakkhaṇa). It has three moments called arising, existing, and dissolving moments. Chitta continues processing sensations between 17 moments called Citta Vīthi/series. A Matter Zone (Rūpa-Kalāpa) has 17 Chitta moments too. Suppose there are smallest matter zones with smallest periods in the smallest volume called Planck scale and Planck time. Likely, its time can continue from moment to moment on energy wave moments in it, just like the continuation of 17 Chitta moments in Rūpa-Kalāpa (Matter Zones). However, according to Buddhism, the mind is a virtual (non-local, 'Athathya') phenomenon that can manifest in virtual realities. Accordingly, it is relatively invisible between realms (levels of existence). "There are clear separations between different types of realms/worlds and sub realms in Buddhism (31 Loka/worlds). The first 5 worlds are Hell, Animal, Hungry Ghost, Asura, and the Human world. But there is no big difference between humans and animals. So If we say that humans and animals live in only one world, there are only 4 below the 6 Deva worlds. Above, there are 10 Brahma worlds with Brahma beings who can enjoy bliss. There are 6 more Brahma worlds from 'Asaññasatta' (Satta/beings with no cognitions) world to 4 'Immaterial worlds' ('Arūpa-Loka'). *(10)" Those groups of worlds $(4+6+10+6+4$ worlds) show a balance $(4,6,10 \& 10,6,4)$ like a dimensional balance. Seemingly there are worlds as groups $((10,10,10)$ or $(4,6,10,10)$ or $(4,6,10,6,4))$ and subgroups $((4,6) \&(6,4))$ too. But as humans, normally, we can't see the Deva and Brahma worlds. Perhaps some worlds are visible to other worlds. That visibility could depend on natural reasons. E.g., Suppose most living beings always have/use only 1 moment (Thiti moment) of consciousness in the 3 moments in a Chitta/mind mom. In that case, some Matter/Rūpa Zones/Kalāpa would emerge before or later, without aligning with our Chitta moment. And then, those beings wouldn't see Uppāda (arising) and Bhanga (dissolving) moments consciously, when other Matter Zones appear as a result of the Țhiti (existing) moment in them. As if using an energy moment that starts before or after the start of the living moment of others. However, that level of visibility can change depending on the power of the mind/Chitta. Some great and wise people said they could see invisible beings (E.g., Ram Bahadur Bomjon). So perhaps some people may have the ability to change the wave pattern in their mind (mind/wave moments) to see the generally invisible moments.!

According to Abhidhamma, the Chitta is a fundamental phenomenon (a Paramartha) in the universe. But it doesn't show its origin as it is a very primitive cyclic process. Suppose Chitta is connected to a few fundamental quantum fields, and there are different qualities in Chitta fields. E.g., "Male, Female, Brahma, and perhaps a state of Chitta to end the rebirth." Like a unique process in fundamental particles/fields (like a moment of changing flavor/formation or attraction). If so, perhaps they are 3 processes like this: 1) attract dimensions (to be stable), 2) absorb dimensions (becoming stable/balanced), 3) select dimensions to react (becoming unstable/unbalanced again). A detectable or undetectable

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com

quantum process in a few elementary particles could make causes continue as a process that could probably become a cyclic process similar to the process in Chitta. E.g., quantum entanglement, superposition, tunneling, antimatter reactions, unstable dimensions, etc. According to Buddhism, looking at the process in the Chitta moment to explain it in detail was the hardest thing the Buddha did after the Buddhahood. The Chitta moment continues on dependent origination. And it is a natural process and not a living being. And it is the place the mind observes things and dies instantly. But causes continue to live for a moment again. We see something with the rapid continuation of the observations in mind (maybe we observe dimensions in quantum fields). At a glance, the Chitta moment possibly can move through Matter Zones because of the short life in a Chitta moment. Perhaps the existence of 17 Chitta moments in Matter Zones helps to continue the living moment in Chitta, helping to survive after death. Abhidhamma explains a process in Chitta moments that always arises with some Mental Factors/'Chaithasika' (in 52 Chaithasika/Cetasika) becoming a Chitta Plane/'Bhūmi' (in 89 Chitta Bhūmi) of existence. It would seem that 'existence' is an emergence from the quantum fields. According to quantum mechanics, experimentally detecting ripples in quantum fields usually show the existence of those quantum fields. Suppose our brains emit many visible or invisible quantum fields (electromagnetic fields) when we think. We can try to use a scientific technology or an extraordinary power of the mind to detect those quantum fields (E.g., "mind reader/influencer: Lior Suchard *(11)").

6. MATHEMATICAL PROBABILITIES BETWEEN DIMENSIONS OF CONDITIONED ZEROS

The dimensional structures can interact during and/or after the formations. The dimensional superposition of this 0.00000 point probably becomes $(+-0.00000)^{\wedge} 6$ interrelatedly. And/Or, it becomes this $(+-0.00001+-0.000000-+0.000000-$ $+0.00001)^{\wedge} 3$). This 0.00000 point in the calculation is likely connected to a new start. But it could share dimensions with 0 to 0.00000 range and above as 4 possible arrangements and 4 probabilities for each arrangement:

$$
\begin{aligned}
& \text { 1.) } \left.(+-0.000000+-0.00001-+0.000000-+0.00001)^{\wedge} 3.2 .\right)(-+0.000000-+0.00001+-0.00001+-0.000000)^{\wedge} 3 . \\
& \text { 3.) } \left.(+-0.00001-+0.000000+-0.000000-+0.00001)^{\wedge} 3.4 .\right)(-+0.00001+-0.000000+-0.00001-+0.000000)^{\wedge} 3 .
\end{aligned}
$$

There are many probabilities of formations on the directly unrelated 3 standard dimensions. Probabilities increase on the number of standard dimensions. And prone to lead a process like cyclic explosions (destructions or probabilistic rotations). They probably make a continuation pattern of the destructions like a continuation of a ratio. E.g., "According to Buddhism, there is a ratio of destructions in the universe: 56:7:1 as $((7+1) \times 7): 7: 1$ which triggered or caused by 3 great elements called Heat, Water*, and Air. *In Abhidhamma, Water is a great element with Liquid nature $\left.\left((+1)^{\wedge} 2 \times(-1)^{\wedge} 2\right)\right)$. It's like collapsing pure elements ((Heat x $7+$ Water x 1)x 7$)+$ Heat x $7+$ Air x 1) *(12)".

Directional infinities could convert the 6 directions into moments of nothingness in the universe. Possibly, it continued towards the outside and inside point (+6-6) like moments becoming 12 dimensions. It could arise/originate like a dimensional symmetry making those virtual gaps at the 'non/no/null directional' (0.000000) point. The positions and arrangements of the plus (+) and minus (-) possibilities would make 64 probabilistic formations. It's like a cyclic process in the virtual gaps of dimensions. This is a simple representation of them:
(1. $(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(-+)(+-) \&(-+)(+-) \&(+-)(-+), 2 .(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(-+)(+-) \&(-$ $+)(+-) \&(-+)(+-), 3 .(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(-+)(+-) \&(+-)(-+) \&(+-)(-+), 4 .(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&$ $(-+)(+-) \&(+-)(-+) \&(-+)(+-), 5 .(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(-+)(+-) \&(+-)(-+), 6 .(+-)(-+) \&(+-)(-+)$ $\&(+-)(-+) \&(+-)(-+) \&(-+)(+-) \&(-+)(+-), 7 .(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(+-)(-+), 8 .(+-)(-$ $+) \&(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(-+)(+-), 9 .(+-)(-+) \&(+-)(-+) \&(-+)(+-) \&(-+)(+-) \&(-+)(+-) \&(+-$ $)(-+), 10 .(+-)(-+) \&(+-)(-+) \&(-+)(+-) \&(-+)(+-) \&(-+)(+-) \&(-+)(+-), 11 .(+-)(-+) \&(+-)(-+) \&(-+)(+-) \&(-+)(+-)$
 $)(-+) \&(-+)(+-) \&(-+)(+-) \&(+-)(-+), 14 .(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(-+)(+-) \&(-+)(+-) \&(-+)(+-), 15 .(+-)(-+)$ \& $(+-)(-+) \&(+-)(-+) \&(-+)(+-) \&(+-)(++) \&(+-)(-+), 16 .(+-)(-+) \&(+-)(-+) \&(+-)(-+) \&(-+)(+-) \&(+-)(-+) \&(-$ $+)(+-)) \mathbf{x} 4$ ('the 4 formations of this: $\left.(+-)(-+) \&(+-)(-+)^{\prime}\right)=64$ probabilistic formations

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com

Those 64 possibilities were based on only 1 arrangement of these $(+-0.00001+-0.000000-+0.000000-+0.00001)^{\wedge} 3$ symmetric instants. But with the other 3 arrangements of those instants, there would be 4 different groups of 64 possibilities. The total duration of those 256 possibilities (64×4 destructions) is the duration of that cyclic process. E.g., "According to Buddhism, a big cyclic process in the universe make 256 destructions in it, as 64 destructions in 64 subperiods (Intermediate eons /Antahkalpa (20 human growths)) and 3 more periods (eons) with 64 destructions (64×4), while the contraction (Sanvattai) and expansion (Vivattai) as a cyclic process. *(12)*(8)*(13)".
"Perhaps the universe is a process of symmetric mathematical probabilities of dimensions. According to experiments and theories in particle physics, there are quantum superpositions in particles/fields. *(14)" If the 6 main directions made dimensions, then a non-dimensional zero (zero infinity: 0∞) could be equal to dimensional zeros $\left((+-0)^{\wedge} 6\right)$ as a separation from the infinity. That could make a density in dimensional zeros as a way to reach the state of infinity again. That mathematical requirement could always be based on the 6 main directions to be symmetric. And then it could be equal to this $(+-1-+0.0+-0.0-+1)^{\wedge} 3$ supersymmetric virtual density too. But it would be 4 symmetric formations of existence on its mathematical probabilities.

If the earliest nature of the universe could make mathematical probabilities like a continuation (like a momentum) of zero (from 0 to 0.00000 , etc.), that could lead to symmetric cyclic possibilities in the universe. But the superpositions and probabilities of this 0.000000 and this 0.00001 could be this $(0.000000 / \mathbf{0 . 0 0 0 0 1}$ or $0.000000 \times \mathbf{0 . 0 0 0 0 1}$ And $0.00001 / 0.000000$ or $0.00001 x 0.000000$) symmetric position of instants. That can change as a rotation. It is a 2 dimensional cycle (these 'x' and '/' or ' $\$ ' symbols show directions only.). Hence, instead of having the previously mentioned probabilities of instants, there could be super probabilities with superpositions like these:

1st formation: $(-+0.0 /+\mathbf{- 1} \boldsymbol{+} \boldsymbol{1} \backslash+-0.0) \times 0 \wedge 5$ and/or $(-+\mathbf{1} /+-0.0-+0.0 \backslash+-\mathbf{1}) \times 0^{\wedge} 5$,
2nd formation: $(-+0.0 \mathrm{x}+\mathbf{- 1}-+\mathbf{1} x+-0.0) \mathrm{x} 0 \wedge 5$ and/or $(-+\mathbf{1 x}+-0.0-+0.0 x+-1) \times 0^{\wedge} 5$,
3rd formation: (+-1/-+0.0 +-0.0 $0-+1) \times 0^{\wedge} 5$ and/or $(+-0.0 /-+\mathbf{1}+-1 \backslash+0.0) \times 0^{\wedge} 5$,
4th formation: $(+\mathbf{1 x}-+0.0+-0.0 x-+1) \times 0^{\wedge} 5$ and/or $(+-0.0 \mathrm{x}-+\mathbf{1}+-1 x-+0.0) \times 0^{\wedge} 5$.
The superposition of 0.000000 and 0.00001 would be very close to 0.00000 , staying both of them next to it and becoming neutral probabilities. They can change cyclically as probabilistic rotations.! This symmetry $(-+0.000000 \mathrm{x}+\mathbf{- 0 . 0 0 0 0 1}-$ $+\mathbf{0 . 0 0 0 0 1} x+-0.000000)$ is more symmetric than this symmetry $(-+0.000000 \boldsymbol{+} \mathbf{0 . 0 0 0 0 1}+-0.000000 \boldsymbol{+ 0 . 0 0 0 0 1})$. Suppose a universal entanglement with something like that makes a complete universal rotation. Over the course, likely, its rotation can destroy and restart the universe's formation, like a process to be a strongly/closely entangled universe that can continue the rotation. Also, filling the collapsed gaps like making a big bounce, rotating dimensions. E.g., from up to the left, up to the right, up to the back, up to the forward, etc. And moving to the next formation in the probabilistic formations of the entangled and conditioned symmetric zeros of the universal zero (0).

7. CONTINUING THE CALCULATION TO VERIFY THE ORIGIN OF THE FIRST UNIVERSE

$(+1-(-1))^{\wedge} 3=(+1)^{\wedge} 3-\left((+1)^{\wedge} 3 x(-1)-(-1)^{\wedge} 2 x(+1)^{\wedge} 2\right)+(-1)^{\wedge} 2 x(+1)-\left((+1)^{\wedge} 2 x(-1)-\left((+1)^{\wedge} 2 x(-1)^{\wedge} 2-(-1)^{\wedge} 3 \mathrm{x}(+1)\right)+(-1)^{\wedge} 3\right)$
$\left\{(+-0-+0)^{\wedge} 6\right\} \times \mathrm{n}==$ initial MATTER and/or ANTIMATTER $==\left\{(+0-0)^{\wedge} 6\right.$ and $\left.(-0+0)^{\wedge} 6\right\} \times \mathrm{n}-$-If 1 st $\mathrm{n}=1,2$ nd $>=12$
Outputs of the first $(+0-0)^{\wedge} 6$ combination originated with the support of its opposite $(-0+0)^{\wedge} 6$ combination as a process of symmetric reactions. It's a reaction between initial/primeval Matter and Antimatter until the symmetry separates (like breaking/stopping). Using the most possible output of this $(+0-0)^{\wedge} 6$ to continue the calculation:

```
(+0-0)^6 == ((+1-(-1))^3 x (+(1)-(-(1)))) x ((1 x (+0.5\ldots...-(-0.5\ldots...)) x (2,/3/(1\ldots....x(5/5)) - 1\ldots.../3)) x (+-1/-+0.0 +-0.0\
-+1)x0^5(LR||D|FB))
=(First Bracket Opened ((+1)^3 - ((+1)^3 x (-1)-(-1)^2 x (+1)^2) + (-1)^2 x (+1)-((+1)^2 x (-1)-((+1)^2 x (-1)^2 -(-
1)^3 x (+1))+(-1)^3)) First Bracket Closed
x Second Bracket Opened (+(1)-(-(1))) Second Bracket Closed)
x ((1 x (+0.5.....-(-0.5......)) x (2,/3 / (1.....x(5/5)) - 1...../3)) x (+-1 /-+0.0 +-0.0\ -+1)x0^5(LR|UD|FB))
= (First Bracket Opened ((+1)^3 x (+(1)-(-(1))) -((+1)^3 x (-1) x (+(1)-(-(1))) - (-1)^2 x (+1)^2) x (+(1)-(-(1))) +(-1)^2 x
(+1) x (+(1)-(-(1))) - ((+1)^2 x (-1) x (+(1)-(-(1)))-((+1)^2 x (-1)^2 x (+(1)-(-(1))) -(-1)^3 x (+1) x (+(1)-(-(1)))) +(-1)^3
```

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com
x (+(1)-(-(1))))) First Bracket Closed
\mathbf{x} Second Bracket Opened () Second Bracket Closed)
$\mathrm{x}\left((1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots)) .\mathrm{x}(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))-1 \ldots . . / 3)) \mathrm{x}(+-1 /-+0.0+-0.0 \backslash-+1) \mathrm{x} 0^{\wedge} 5(L R|U D| F B)\right)$
The First Brackets () and the Second Brackets () come from two different symmetries (from this (+0-0)^6 and this (+0.0$\left.0.0)^{\wedge} 3\right)$. Those two symmetries (brackets) should share the two groups of dimensions (this $(+1-(-1))^{\wedge} 3$ and $\left.(+(1)-(-(1)))\right)$ with each other. The fundamental symmetry must combine those two groups of dimensions between both brackets. But, on the continuation of both dimensional groups in different moments, borrowing or making sets of dimensions by both sides, they become connected and/or combined symmetries. Meanwhile, they would try to take over the opposite dimensional group(s) against each other and/or appear and disappear like making waves ($\sim \sim)$.
$=\left(\left(\right.\right.$ Appeared wave $(+1)^{\wedge} 3 \mathrm{x}(+(1)-(-(1)))-\left((+1)^{\wedge} 3 \times(-1) \times(+(1)-(-(1)))-(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right) \times(+(1)-(-(1)))+(-1)^{\wedge} 2 \times(+1)$ $\mathrm{x}(+(1)-(-(1)))-\left((+1)^{\wedge} 2 \times(-1) \mathrm{x}(+(1)-(-(1)))-\left((+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+(1)-(-(1)))-(-1)^{\wedge} 3 \mathrm{x}(+1) \mathrm{x}(+(1)-(-(1)))\right)+(-1)^{\wedge} 3 \mathrm{x}\right.$ (+(1)-(-(1))))) That combination is like a free (not/less compressed) structure relative to the next wave level. $\mathbf{x}() \sim \sim() \mathbf{x}$

```
(Potential wave \(+(1) \times\left((+1)^{\wedge} 3-\left((+1)^{\wedge} 3 \times(-1)-(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(-1)^{\wedge} 2 \times(+1)-\left((+1)^{\wedge} 2 \times(-1)-\left((+1)^{\wedge} 2 \times(-1)^{\wedge} 2-(-\right.\right.\right.\)
1)^ \(\left.\left.3 x(+1))+(-1)^{\wedge} 3\right)\right)\)
\(-(-(1)) \times\left((+1)^{\wedge} 3-\left((+1)^{\wedge} 3 \times(-1)-(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(-1)^{\wedge} 2 \times(+1)-\left((+1)^{\wedge} 2 \times(-1)-\left((+1)^{\wedge} 2 \times(-1)^{\wedge} 2-(-1)^{\wedge} 3 \mathrm{x}(+1)\right)+(-\right.\right.\)
1)^3)))) That combination is like a compressed structure relative to the previous wave level.
\(\mathrm{x}((1 \mathrm{x}(+0.5 \ldots \ldots .-(-0.5 \ldots . .)) .\mathrm{x}(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))-1 \ldots . . . / 3)) \mathrm{x}(+-1 /-+0.0+-0.0 \backslash-+1) \mathrm{x} 0 \wedge 5(L R|U D| F B))\)
```

If living beings depend on dimensions, different sets of dimensions could impact the living beings. As if they make natures like visible, gendered, real, small/limited, Humans against the natures like invisible, genderless, virtual, big, Brahmas, Hells, etc. The time difference between the sets of dimensions would make a process like becoming and vanishing (decoherence) against each other, like appear and disappear (waving: ~~) continuing to the next moment: $=\left(\left(\right.\right.$ Potential wave $(+1)^{\wedge} 3 \mathrm{x}(+(1)-(-(1)))-\left((+1)^{\wedge} 3 \mathrm{x}(-1) \mathrm{x}(+(1)-(-(1)))-(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2\right) \mathrm{x}(+(1)-(-(1)))+(-1)^{\wedge} 2 \mathrm{x}(+1) \mathrm{x}$ $(+(1)-(-(1)))-\left((+1)^{\wedge} 2 \times(-1) \times(+(1)-(-(1)))-\left((+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times(+(1)-(-(1)))-(-1)^{\wedge} 3 \mathrm{x}(+1) \mathrm{x}(+(1)-(-(1)))\right)+(-1)^{\wedge} 3 \mathrm{x}\right.$ $(+(1)-(-(1))))) \mathbf{x}() \sim \sim$
(Disppeared wave $(+1)^{\wedge} 3 \mathrm{x}(+(1)-(-(1)))-\left((+1)^{\wedge} 3 \mathrm{x}(-1) \times(+(1)-(-(1)))-(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2\right) \mathrm{x}(+(1)-(-(1)))+(-1)^{\wedge} 2 \mathrm{x}(+1) \mathrm{x}$ $(+(1)-(-(1)))-\left((+1)^{\wedge} 2 \times(-1) \times(+(1)-(-(1)))-\left((+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times(+(1)-(-(1)))-(-1)^{\wedge} 3 \mathrm{x}(+1) \mathrm{x}(+(1)-(-(1)))\right)+(-1)^{\wedge} 3 \mathrm{x}\right.$ (+(1)-(-(1))))) $\mathbf{x}() \sim \sim() \mathbf{x}$
(Appeared wave $+(1) \times\left((+1)^{\wedge} 3-\left((+1)^{\wedge} 3 \times(-1)-(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(-1)^{\wedge} 2 \times(+1)-\left((+1)^{\wedge} 2 \times(-1)-\left((+1)^{\wedge} 2 \times(-1)^{\wedge} 2-(-\right.\right.\right.$ 1)^3x(+1))+(-1)^3))
$-(-(1)) \times\left((+1)^{\wedge} 3-\left((+1)^{\wedge} 3 \times(-1)-(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(-1)^{\wedge} 2 \times(+1)-\left((+1)^{\wedge} 2 \times(-1)-\left((+1)^{\wedge} 2 \times(-1)^{\wedge} 2-(-1)^{\wedge} 3 x(+1)\right)+(-\right.\right.$ 1) $\left.{ }^{\wedge} 3\right)$))
$\mathrm{x}((1 \mathrm{x}(+0.5 \ldots . . .-(-0.5 \ldots . . .)) .\mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))-1 \ldots . . . / 3)) \mathrm{x}(+-1 /-+0.0+-0.0 \backslash-+1) \mathrm{x} 0 \wedge 5(L R|U D| F B))$
That process could continue to the next moment making a complete cyclic process like this: Wave functions $=\left(\right.$ Zone $4\left(\right.$ Appeared wave $(+1)^{\wedge} 3 \times(+(1)-(-(1)))-\left((+1)^{\wedge} 3 \times(-1) \times(+(1)-(-(1)))-(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right) \times(+(1)-(-(1)))+(-1)^{\wedge} 2$ $\mathrm{x}(+1) \mathrm{x}(+(1)-(-(1)))-\left((+1)^{\wedge} 2 \times(-1) \mathrm{x}(+(1)-(-(1)))-\left((+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+(1)-(-(1)))-(-1)^{\wedge} 3 \mathrm{x}(+1) \mathrm{x}(+(1)-(-(1)))\right)+(-\right.$ $\left.1)^{\wedge} 3 \mathrm{x}(+(1)-(-(1)))\right)$ until disappear and be a potential wave.) $\mathbf{x}() \sim \sim$
Zone 3 (Potential wave (+1$)^{\wedge} 3 \mathrm{x}(+(1)-(-(1)))-\left((+1)^{\wedge} 3 \mathrm{x}(-1) \mathrm{x}(+(1)-(-(1)))-(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2\right) \mathrm{x}(+(1)-(-(1)))+(-1)^{\wedge} 2 \mathrm{x}$ $(+1) \times(+(1)-(-(1)))-\left((+1)^{\wedge} 2 \times(-1) \times(+(1)-(-(1)))-\left((+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times(+(1)-(-(1)))-(-1)^{\wedge} 3 \times(+1) \times(+(1)-(-(1)))\right)+(-1)^{\wedge} 3\right.$ $x(+(1)-(-(1))))$ until appear and be a disappeared wave.)
$\mathbf{x}() \sim \sim() \mathbf{x}$
Zone 2 (Potential wave $+(1) \times\left((+1)^{\wedge} 3-\left((+1)^{\wedge} 3 \times(-1)-(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(-1)^{\wedge} 2 \times(+1)-\left((+1)^{\wedge} 2 \times(-1)-\left((+1)^{\wedge} 2 \times(-\right.\right.\right.$ 1)^2 $\left.\left.\left.-(-1)^{\wedge} 3 x(+1)\right)+(-1)^{\wedge} 3\right)\right)$
$-(-(1)) \times\left((+1)^{\wedge} 3-\left((+1)^{\wedge} 3 \times(-1)-(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(-1)^{\wedge} 2 \times(+1)-\left((+1)^{\wedge} 2 \times(-1)-\left((+1)^{\wedge} 2 \times(-1)^{\wedge} 2-(-1)^{\wedge} 3 x(+1)\right)+(-\right.\right.$ $\left.\left.1)^{\wedge} 3\right)\right)$ until appear and be a disappeared wave.)
$\sim \sim(0 x$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com
Zone 1 (Disappeared wave $+(1) \mathrm{x}\left((+1)^{\wedge} 3-\left((+1)^{\wedge} 3 \mathrm{x}(-1)-(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2\right)+(-1)^{\wedge} 2 \mathrm{x}(+1)-\left((+1)^{\wedge} 2 \mathrm{x}(-1)-\left((+1)^{\wedge} 2 \mathrm{x}\right.\right.\right.$ $\left.\left.\left.(-1)^{\wedge} 2-(-1)^{\wedge} 3 x(+1)\right)+(-1)^{\wedge} 3\right)\right)$
$-(-(1)) \times\left((+1)^{\wedge} 3-\left((+1)^{\wedge} 3 \times(-1)-(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(-1)^{\wedge} 2 \times(+1)-\left((+1)^{\wedge} 2 \times(-1)-\left((+1)^{\wedge} 2 \times(-1)^{\wedge} 2-(-1)^{\wedge} 3 x(+1)\right)+(-\right.\right.$ 1)^3)) until be a potential wave (as a reconnection) and be an appeared wave.))
$\mathrm{x}((1 \mathrm{x}(+0.5 \ldots . .-(-0.5 \ldots . .)) .\mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))-1 \ldots . . . / 3)) \mathrm{x}(+-1 /-+0.0+-0.0 \backslash-+1) \mathrm{x} 0 \wedge 5(L R|U D| F B))$
Those 16 sets/groups (8×2) of dimensions in those 4 structures are like 16 moments of energy. Suppose an energy wave moment disappears as a moment in the disappeared structure (an energy wave moment in an empty zone ' $(0$ ') near the next appeared or potential dimensional structure. In that case, there are 17 energy wave moments in the lifetime of those dimensional structures. We can conditionally call it the smallest duration in the universe. But there are 17 energy wave moments in that smallest matter zone. And that duration/time and length of the matter zone are almost like the constants called Planck time and Planck length. If the wave potential made many structures of dimensions ($2+\mathrm{n}$ structures), these mixed dimensions ($1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots . .)) \times.(2, / 3 /(1 \ldots . . . x(5 / 5))-1 \ldots . . / 3))$ eventually could interact with them separately. It can go through those dimensional structures, becoming a process of making something (E.g., mass dimensions) or moments of appearing something. It's like the maximum speed of light that arises in relative reality as a relative or direct continuation of a visible moment from moment to moment.!
$=\left(\right.$ Zone 3 and/or Zone $4\left((+(1)) \times(+1)^{\wedge} 3-(-(1)) x(+1)^{\wedge} 3-\left((+(1)) \times(+1)^{\wedge} 3 \times(-1)-(-(1)) \times(+1)^{\wedge} 3 \times(-1)-((+(1)) \times(-\right.\right.$ $\left.\left.1)^{\wedge} 2 \times(+1)^{\wedge} 2-(-(1)) x(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)\right)+\left((+(1)) \times(-1)^{\wedge} 2 \times(+1)-(-(1)) \times(-1)^{\wedge} 2 \times(+1)\right)-\left((+(1)) \times(+1)^{\wedge} 2 \times(-1)-(-(1))\right.$ $\mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)-\left((+(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2-(-(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2-\left((+(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(+1)-(-(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(+1)\right)\right)+$ $\left.\left.(+(1)) x(-1)^{\wedge} 3-(-(1)) x(-1)^{\wedge} 3\right)\right)$
x (the energy wave function in the relatively smallest scale or Planck scale)

AND/OR (the energy wave function in the relatively smallest scale or Planck scale) x

Zone 1 and/or Zone $2\left((+(1)) \times(+1)^{\wedge} 3-\left((+(1)) x(+1)^{\wedge} 3 \times(-1)-(+(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(+(1)) \mathrm{x}(-1)^{\wedge} 2 \times(+1)-(\right.$ $\left.(+(1)) \times(+1)^{\wedge} 2 \times(-1)-\left((+(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2-(+(1)) \times(-1)^{\wedge} 3 \times(+1)\right)+(+(1)) \times(-1)^{\wedge} 3\right)$
$-\left((-(1)) x(+1)^{\wedge} 3-\left((-(1)) x(+1)^{\wedge} 3 \times(-1)-(-(1)) x(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(-(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)-\left((-(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)-((-\right.\right.$ (1)) $\left.\left.\left.\left.\left.\mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2-(-(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(+1)\right)+(-(1)) \mathrm{x}(-1)^{\wedge} 3\right)\right)\right)\right)$
$\mathrm{x}\left((1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots . .)) .\mathrm{x}(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))-1 \ldots . . / 3)) \mathrm{x}(+-1 /-+0.0+-0.0 \backslash-+1) \mathrm{x} 0^{\wedge} 5(L R|U D| F B)\right)$
$=\left(\left(\right.\right.$ Zone 3 and/or Zone $4\left((+(1)) x(+1)^{\wedge} 3 \times(1 \times(+0.5 \ldots \ldots-(-0.5 \ldots \ldots)) x(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots \ldots / 3))\right.$

- (-(1)) x (+1)^3 x (1 x (+0.5......-(-0.5......)) x (2,/3 / (1......x(5/5)) - 1....../3))
$-\left((+(1)) x(+1)^{\wedge} 3 \times(-1) x(1 \times(+0.5 \ldots . . .-(-0.5 \ldots . .)) x.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . . / 3))\right.$
$-(-(1)) x(+1)^{\wedge} 3 \times(-1) x(1 \times(+0.5 \ldots . . .-(-0.5 \ldots . . .)) x.(2, / 3 /(1 \ldots x(5 / 5))-1 \ldots . . . / 3))$
$-\left((+(1)) x(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times(1 \times(+0.5 \ldots \ldots-(-0.5 \ldots \ldots)) x(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots \ldots / 3))\right.$
$\left.\left.-(-(1)) x(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times(1 \times(+0.5 \ldots \ldots .-(-0.5)) x.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . . / 3))\right)\right)$
$+\left((+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1) \mathrm{x}(1 \mathrm{x}(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots)) .\mathrm{x}(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))-1 \ldots . . / 3))\right.$
$\left.-(-(1)) x(-1)^{\wedge} 2 \times(+1) x(1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots)) x.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . . / 3))\right)$
$-\left((+(1)) x(+1)^{\wedge} 2 \times(-1) x(1 \times(+0.5 \ldots . . .-(-0.5 \ldots . .)) x.(2, / 3 /(1 \ldots . . . x(5 / 5))-1 \ldots . . . / 3))\right.$
$-(-(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1) \mathrm{x}(1 \times(+0.5 \ldots . . .-(-0.5 \ldots . .)) .\mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))-1 \ldots . . . / 3))$
$-\left((+(1)) x(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times(1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots .)) x.(2, / 3 /(1 \ldots x(5 / 5))-1 \ldots \ldots / 3))\right.$
$-(-(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(1 \times(+0.5 \ldots \ldots-(-0.5 \ldots \ldots)) \mathrm{x}(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))-1 \ldots \ldots / 3))$
$-\left((+(1)) x(-1)^{\wedge} 3 \times(+1) x(1 \times(+0.5 \ldots . . .-(-0.5 \ldots . .)) x.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . . / 3))\right.$
$\left.\left.-(-(1)) x(-1)^{\wedge} 3 x(+1) x(1 \times(+0.5 \ldots \ldots-(-0.5 \ldots \ldots)) x(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots \ldots / 3))\right)\right)$
$+(+(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(1 \mathrm{x}(+0.5 \ldots . .-(-0.5 \ldots . .)) .\mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))-1 \ldots . . / 3))$
$\left.\left.-(-(1)) \times(-1)^{\wedge} 3 \times(1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots .)) \times.(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))-1 \ldots . . / 3))\right)\right)$ [*free:compressed=$\left.=2: 0\right]$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online) Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com

x (the energy wave function) AND/OR (the energy wave function) x

Zone 1 and/or Zone $2\left((+(1)) \times(+1)^{\wedge} 3 \times(1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots)) \times.(2, / 3 /(1 \ldots x(5 / 5))-1 \ldots \ldots . / 3))\right.$
$-((+(1)) x(+1) \wedge 3 \times(-1) x(1 \times(+0.5 \ldots . . .-(-0.5)) x.(2, / 3 /(1 \ldots x(5 / 5))-1 / 3))$
$\left.-(+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(1 \mathrm{x}(+0.5 \ldots \ldots-(-0.5 \ldots \ldots)) .\mathrm{x}(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))-1 \ldots \ldots . / 3))\right)$
$+(+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1) \mathrm{x}(1 \times(+0.5 \ldots \ldots-(-0.5 \ldots \ldots)) \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))-1 \ldots \ldots / 3))$
$-\left((+(1)) x(+1)^{\wedge} 2 \times(-1) x(1 \times(+0.5 \ldots . . .-(-0.5 \ldots . .)) x.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . . / 3))\right.$
$-\left((+(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots .)) .\mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))-1 \ldots \ldots / 3))\right.$
$\left.-(+(1)) \mathrm{x}(-1)^{\wedge} 3 \times(+1) \mathrm{x}(1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots . .)) .\mathrm{x}(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))-1 \ldots . . . / 3))\right)$
$\left.+(+(1)) \times(-1)^{\wedge} 3 \times(1 \times(+0.5 \ldots . . .-(-0.5 \ldots . .)) \times.(2, / 3 /(1 \ldots x(5 / 5))-1 / 3))\right)$
$-\left((-(1)) x(+1)^{\wedge} 3 \times(1 \times(+0.5 \ldots . . .-(-0.5 \ldots . .)) x.(2, / 3 /(1 \ldots x(5 / 5))-1 \ldots . . . / 3))\right.$
$-\left((-(1)) \times(+1)^{\wedge} 3 \times(-1) \times(1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots)) \times(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots \ldots / 3))\right.$
$\left.-(-(1)) x(-1)^{\wedge} 2 x(+1)^{\wedge} 2 \times(1 \times(+0.5 \ldots . .-(-0.5 \ldots . .)) x.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . . / 3))\right)$
$+(-(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1) \mathrm{x}(1 \times(+0.5 \ldots \ldots-(-0.5 \ldots \ldots)) \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))-1 \ldots . . . / 3))$

- ((-(1)) x (+1)^2 x (-1) x (1 x (+0.5.....-(-0.5......)) x (2,/3/(1......x(5/5)) -1....../3))
$-\left((-(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times(1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots .)) \times.(2, / 3 /(1 \ldots x(5 / 5))-1 \ldots . . . / 3))\right.$
$\left.-(-(1)) \times(-1)^{\wedge} 3 \times(+1) x(1 \times(+0.5 \ldots . . .-(-0.5 \ldots . .)) x.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 . \ldots . . / 3))\right)$
$\left.\left.\left.\left.+(-(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(1 \mathrm{x}(+0.5 \ldots \ldots-(-0.5 \ldots . .)) .\mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))-1 \ldots . . / 3))\right)\right)\right)\right)$ [*free:compressed=1-last $: 1$-first]
x (the wave function) AND/OR (the wave function)
$\mathbf{x}\left(\left(1 \times(+0.5 \ldots \ldots-(-0.5 \ldots \ldots .)) x.\left(2, / 3 /(1 \ldots x(5 / 5)) x\right.\right.\right.$ Zone 3 and/or Zone $4\left((+(1)) x(+1)^{\wedge} 3-(-(1)) x(+1)^{\wedge} 3-((+(1)) x\right.$ $\left.(+1)^{\wedge} 3 \mathrm{x}(-1)-(-(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x}(-1)-\left((+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2-(-(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2\right)\right)+\left((+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)-(-(1))\right.$ $\left.\mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)\right)-\left((+(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)-(-(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)-\left((+(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2-(-(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2-\right.\right.$ $\left.\left.\left.\left((+(1)) x(-1)^{\wedge} 3 \times(+1)-(-(1)) x(-1)^{\wedge} 3 x(+1)\right)\right)+(+(1)) x(-1)^{\wedge} 3-(-(1)) x(-1)^{\wedge} 3\right)\right)$
$-1 / 3 \times$ Zone 3 and/or Zone $4\left((+(1)) x(+1)^{\wedge} 3-(-(1)) x(+1)^{\wedge} 3-\left((+(1)) x(+1)^{\wedge} 3 x(-1)-(-(1)) x(+1)^{\wedge} 3 \times(-1)-((+(1))\right.\right.$ $\left.\left.\mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2-(-(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2\right)\right)+\left((+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)-(-(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)\right)-\left((+(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)-(-\right.$ (1)) $\mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)-\left((+(1)) \mathrm{x}(+1)^{\wedge} 2 \times(-1)^{\wedge} 2-(-(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2-\left((+(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(+1)-(-(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(+1)\right)\right)$ $\left.\left.\left.+(+(1)) \mathrm{x}(-1)^{\wedge} 3-(-(1)) \mathrm{x}(-1)^{\wedge} 3\right)\right)\right)[*$ free:compressed=1-first : 1-last, next: 2:1 or 1:2]
x (the energy wave function) AND/OR (the energy wave function) x
$\left(1 \times(+0.5 \ldots \ldots-(-0.5 \ldots \ldots)) x\left(2, / 3 /(1 \ldots \ldots x(5 / 5)) x\right.\right.$ Zone 1 and/or Zone $2\left((+(1)) x(+1)^{\wedge} 3-\left((+(1)) x(+1)^{\wedge} 3 \mathrm{x}(-1)-(+(1))\right.\right.$ $\left.\mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2\right)+(+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)-\left((+(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)-\left((+(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2-(+(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(+1)\right)+\right.$ $\left.(+(1)) \times(-1)^{\wedge} 3\right)$
$-\left((-(1)) x(+1)^{\wedge} 3-\left((-(1)) x(+1)^{\wedge} 3 \times(-1)-(-(1)) x(-1)^{\wedge} 2 \times(+1)^{\wedge} 2\right)+(-(1)) x(-1)^{\wedge} 2 \times(+1)-\left((-(1)) x(+1)^{\wedge} 2 \times(-1)-((-\right.\right.$ (1)) $\left.\left.\left.\left.x(+1)^{\wedge} 2 x(-1)^{\wedge} 2-(-(1)) x(-1)^{\wedge} 3 x(+1)\right)+(-(1)) x(-1)^{\wedge} 3\right)\right)\right)$
$-1 / 3 \mathrm{x}$ Zone 1 and/or Zone $2\left((+(1)) \mathrm{x}(+1)^{\wedge} 3-\left((+(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x}(-1)-(+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2\right)+(+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}\right.$ $(+1)-\left((+(1)) x(+1)^{\wedge} 2 x(-1)-\left((+(1)) x(+1)^{\wedge} 2 x(-1)^{\wedge} 2-(+(1)) x(-1)^{\wedge} 3 x(+1)\right)+(+(1)) x(-1)^{\wedge} 3\right)$ $-\left((-(1)) x(+1)^{\wedge} 3-\left((-(1)) x(+1)^{\wedge} 3 \times(-1)-(-(1)) x(-1)^{\wedge} 2 x(+1)^{\wedge} 2\right)+(-(1)) x(-1)^{\wedge} 2 \times(+1)-\left((-(1)) x(+1)^{\wedge} 2 x(-1)-((-\right.\right.$ (1)) $\left.\left.\left.\left.\left.\left.\left.\mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2-(-(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(+1)\right)+(-(1)) \mathrm{x}(-1)^{\wedge} 3\right)\right)\right)\right)\right)\right)$ [*free:compressed=0:2, next: 1:2 or 0:3] $\mathrm{x}(+-1 /-+0.0+-0.0 \backslash-+1) \times 0^{\wedge} 5(L R|U D| F B$: those dimensions could make the next wave function, but those new instants could be based on a potential that could transform into many probabilistic formations. And that probabilistic nature could make the next major difference in the dimensional structures. Likely, it can make only two more major groups of structures based on its asymmetric nature. But its rotation would increase their scale more than the previous wave functions. Those dimensional structures could separate as a separation of symmetry (like a symmetry breaking)

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com
depending on the state of probability or position, which doesn't have a fixed state. Those relative $3 D(L R|U D| F B)$ interactions (the two extra standard dimensions: $U D \mid F B$) would increase the dimensional density making 3-dimensional (3D) formations/particles. Consequently, that separation could make two different and distinct groups of dimensional structures (like a Big Bang) with the Spin (mass) that behave like outside and inside structures. Free dimensional structures: "atomic structure, elementary particles in space" and compressed dimensional structures: "primordial Black Holes," etc. "That energy could split dimensionally, making compact objects between them. *(15)" A polarized wave function would polarize elementary particles in it to a very high degree. (E.g., Astronomers using radio telescopes have discovered and characterized ASKAP J173608.2-321635, a highly-polarized, highly-variable, steep-spectrum radio source located just 4 degrees from the Milky Way's center.)

According to the calculation, mainly there are two types of most possible dimensional structures (E.g., Zone 1 and Zone 3). E.g.: Zone $\mathbf{1}==$ A relatively free structure (This is " $+\mathbf{1} \mathbf{- 1}$ Area $1 \& 2 "$ AND/OR "-1+1 Area $1 \& 2 "$:
$(+-1 /-+0.0+-0.0 \backslash-+1) \times 0^{\wedge} 5(L R|U D| F B) \times\left(\right.$ the energy wave function) $\mathbf{x}\left((+(1)) \times(+1)^{\wedge} 3 \times(1 \times(+0.5-(-0.5)\right.$. and/or +1.......) $\mathrm{x}(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))-1 \ldots \ldots / 3))-\left((+(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x}(-1) \mathrm{x}(1 \mathrm{x}(+\mathbf{0 . 5} \ldots . . .-(-\mathbf{0 . 5} \ldots . . .)) .\mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))\right.$

 $(1 \ldots \ldots x(5 / 5))-1 \ldots . . / 3))-\left((+(1)) x(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times(1 \times(+0.5 \ldots . . .-(-0.5 \ldots . . .)) \times.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . . / 3))-(+(1)) x\right.$
 $(2, / 3 /(1 \ldots . . . x(5 / 5))-1 \ldots \ldots . / 3)))-\left((-(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x}(1 \times(+0.5 \ldots . . .-(-0.5)) .\mathrm{x}(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . . / 3))-((-(1)) \mathrm{x}\right.$ $(+1)^{\wedge} 3 \times(-1) \times(1 \times(+\mathbf{0 . 5}-(-0.5)) \times.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . . / 3))-(-(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times(1 \times(+0.5$. -(-
 $1 / 3))-\left((-(1)) \times(+1)^{\wedge} 2 \times(-1) \times(1 \times(+0.5 \ldots \ldots . .-(-0.5)) \times.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . . / 3))-\left((-(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times\right.\right.$
 $(1 \ldots \ldots x(5 / 5))-1 \ldots \ldots / 3)))+(-(1)) x(-1)^{\wedge} 3 \mathrm{x}(1 \mathrm{x}(+\mathbf{0 . 5} \ldots \ldots$-(-0.5......)) $\left.\left.\mathrm{x}(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . / 3)))\right)\right)$ [*free:compressed=2-last : 1-first] \mathbf{x} (the wave function)) \mathbf{x} (the polarized wave function) AND/OR (the polarized wave function) \mathbf{x}
A relatively compressed structure $\left(\left((+-1 /-+0.0) \times 0^{\wedge} 5(L R|U D| F B) \|(+-0.0 \backslash-+1) \times 0^{\wedge} 5(L R|U D| F B)\right) \mathrm{x}\right.$
 $1 \ldots . . / 3))-\left((+(1)) x(+1)^{\wedge} 3 \times(-1) \times(1 \times(+0.5 \ldots \ldots . .-(-0.5 \ldots . .)) \times.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots \ldots / 3))-(+(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times\right.$

 $(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times(1 \times(+\mathbf{0 . 5} \ldots \ldots . .-(-0.5 \ldots . . .)) \times.(2, / 3 /(1 \ldots \ldots x(5 / 5))-1 \ldots . . / 3))-(+(1)) \times(-1)^{\wedge} 3 \times(+1) \times(1 \times(+\mathbf{0 . 5}$.

 x (+0.5...... -(-0.5.......)) x (2,/3 / (1......x(5/5)) - 1....../3)) - ((-(1)) x (+1)^2 x (-1)^2 x (1 x (+0.5...... -(-0.5......)) x (2,/3 /
 $\left.\left.\left.1)^{\wedge} 3 \times(1 \times(+0.5-(-0.5)) \times.(2, / 3 /(1 \ldots x(5 / 5))-1 \ldots . . . / 3))\right)\right)\right)[*$ free:compressed=1-mid :2] $\mathbf{x}($ the wave function $))$

THE MOST POSSIBLE STRUCTURE/PARTICLES (The relatively free structure in Zone 1)

The formation of dimensional sets (particles) with Spin 0.5 (or 1/2) and Spin 1 (like Fermions and Bosons in the Standard Model, including the dimensional sets in Higgs particle (H)):
$==\left(\left(\right.\right.$ the energy wave function) $\mathbf{x}\left(\left(\left(\mathbf{H}\right.\right.\right.$ particle-left:" $+0.5 \ldots \ldots . . . \times(+(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x} 1 \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}$ $(+1 /+0.0) \times 0^{\wedge} 5 "$ virtual/hidden \boldsymbol{U} quark-left: "+0.5...... x $(+(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x} 1 \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(-0.01-1) \mathrm{x} 0 \wedge 5$ " (virtual/hidden U quark-right(-spin):"-0.5...... $\mathrm{x}(+(1)) \times(+1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \times(-0.0 \backslash-1) \times 0^{\wedge} 5$ " \boldsymbol{H} particle-left(-spin):"-0.5...... $\left.\left.\times(+(1)) \times(+1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots . . . \times(5 / 5))) \times(+\mathbf{1} /+0.0) \times 0^{\wedge} 5 "\right)\right)-(H$ particle-right:"+0.5...... x $(+(1)) \times(+1)^{\wedge} 3 \times 1 \times 1 \ldots \ldots . / 3 \times(+1 /+0.0) \times 0^{\wedge} 5 "$ virtual/hidden \boldsymbol{U} quark-left:"+0.5...... $\times(+(1)) \times(+1)^{\wedge} 3 \times 1 \times 1 \ldots . . / 3 \times(-$ $0.0 \backslash \mathbf{- 1}) \times 0^{\wedge} 5 "$-(virtual/hidden \boldsymbol{U} quark-right(-spin): "-0.5...... x $(+(1)) \times(+1)^{\wedge} 3 \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5 "$ H particle-right(-spin):"- $\left.\mathbf{0 . 5} \ldots \ldots . . \mathrm{x}(+(1)) \times(+1)^{\wedge} 3 \times 1 \times 1 \ldots \ldots / 3 \times(+1 /+0.0) \times 0^{\wedge} 5 "\right)$ AND/OR (H particle-left(+ particle):"+(1...... or 0) $\mathrm{x}(+(1)) \times(+1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \times(+\mathbf{1} /+0.0) \times 0^{\wedge} 5$ " M particle-left(1,+particle): "+(1...... or 0) $\mathrm{x}(+(1)) \mathrm{x}$ $(+1)^{\wedge} 3 \mathrm{x} 1 \times(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))) \mathrm{x}(-0.0-\mathbf{1}) \mathrm{x} 0^{\wedge} 5$ " $-(\mathbf{P}$ particle-left:"-(0 or $1) .\mathrm{x}(+(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x} 1 \mathrm{x}(2, / 3 /$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com
$(1 \ldots . . . \mathrm{x}(5 / 5))) \times(-0.0 \backslash-1) \times 0 \wedge 5 " \boldsymbol{P}$ particle-left(+particle):"-(0 or $1) \times(+(1)) \times(+1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots \ldots \times(5 / 5))) \times$
 particle-right(1,+particle):" $+(1$. or 0$) \times(+(1)) \times(+1)^{\wedge} 3 \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5 "-(\mathbf{P}$ particle-right:"-(0 or 1.......) x $(+(1)) \times(+1)^{\wedge} 3 \times 1 \times 1 \ldots . . . / 3 \times(-0.0 \backslash-1) \times 0 \wedge 5 " P$ particle-right $(+$ particle):"-(0 or $1) \times.(+(1)) \times(+1)^{\wedge} 3 \times 1 \times$
 v./h. \boldsymbol{D} quark-l"+0.5...... $\mathrm{x}(+(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x}(-1) \mathrm{x} 1 \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(-0.0 \backslash-\mathbf{1}) \mathrm{x} 0 \wedge 5 "-(v . / h$. D quark-r(-s)"-0.5...... $\mathrm{x}(+(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x}(-1) \mathrm{x} 1 \mathrm{x}(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))) \mathrm{x}(-0.01-1) \mathrm{x} 0^{\wedge} 5$ " \boldsymbol{E} lepton-l(-s):"-0.5...... x $(+(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x}(-1) \mathrm{x} 1 \mathrm{x}$ $\left.(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(+\mathbf{1} /+0.0) \times 0^{\wedge} 5 "\right)$) ($\mathbf{(E}$ lepton-r:"+0.5...... x $(+(1)) \mathrm{x}(+1)^{\wedge} 3 \times(-1) \times 1 \times 1 \ldots . . / 3 \times(+1 /+0.0) \times 0 \wedge 5 "$ v./h. D quark-l"+0.5...... $\mathrm{x}(+(1)) \mathrm{x}(+1)^{\wedge} 3 \times(-1) \times 1 \times 1 \ldots . . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5 "-(v . / h$. D quark-r(-s)"-0.5...... $\mathrm{x}(+(1)) \mathrm{x}$ $(+1)^{\wedge} 3 \mathrm{x}(-1) \mathrm{x} 1 \mathrm{x} 1 . \ldots . . / 3 \mathrm{x}(-0.0-\mathbf{1}) \mathrm{x} 0 \wedge 5 " \boldsymbol{E}$ lepton-r(-s):"-0.5...... x $(+(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x}(-1) \mathrm{x} 1 \mathrm{x} 1 / 3 \mathrm{x}$ $(+1 /+0.0) \times 0^{\wedge} 5$ ") AND/OR (P particle-l(1,+p):"+(1...... or 0) x $(+(1)) \times(+1)^{\wedge} 3 \times(-1) \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times$ $(+1 /+0.0) \times 0^{\wedge} 5 "$ P particle-l(1):"+(1..... or 0) x ($+(1)$) x $(+1)^{\wedge} 3 \mathrm{x}(-1) \times 1 \times(2, / 3 /(1 \ldots \ldots \times(5 / 5))) \times(-0.0 \backslash-\mathbf{1}) \times 0 \wedge 5 "-(\mathbf{M}$ particle-1:"-(0 or 1........) x (+(1)) x (+1)^3 x (-1) x $1 \times(2, / 3 /(1 \ldots \ldots \times(5 / 5))) \times(-0.0 \backslash-1) \times 0^{\wedge} 5 "$ M particle-l($+\boldsymbol{p}$):"-(0 or 1.......) $\left.\left.\times(+(1)) \times(+1)^{\wedge} 3 \times(-1) \times 1 \times(2, / 3 /(1 \ldots \ldots \times(5 / 5))) \times(+1 /+0.0) \times 0^{\wedge} 5 "\right)\right)-($ P particle-r(1,+p):"+(1...... or 0) x (+(1)) $\mathrm{x}(+1)^{\wedge} 3 \times(-1) \times 1 \times 1 \ldots . . / 3 \times(+1 /+0.0) \times 0 \wedge 5 " P$ particle $-r(1): "+\left(1 \ldots . .\right.$. or 0) x $(+(1)) \times(+1)^{\wedge} 3 \times(-1) \times 1 \times 1 \ldots . . / 3 \times(-$ $0.0 \backslash-\mathbf{1}) \times 0^{\wedge} 5$ " -(M particle-r:"-(0 or $\left.1\right) \times(+(1)) \times(+1)^{\wedge} 3 \times(-1) \times 1 \times 1 / 3 \times(-0.0 \backslash-\mathbf{1}) \times 0^{\wedge} 5 "$ M particle-r $(+\boldsymbol{p})$:"-(0
 $\mathrm{x}(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))) \mathrm{x}(+\mathbf{1} /+0.0) \mathrm{x} 0^{\wedge} 5 "+\mathbf{0 . 5} \ldots \ldots . . \mathrm{x}(+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2 \mathrm{x} 1 \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(-0.0 \backslash \mathbf{1}) \mathrm{x} \wedge^{\wedge} 5-(-$ 0.5...... $\mathrm{x}(+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2 \mathrm{x} 1 \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(-0.0 \backslash-1) \mathrm{x} 0^{\wedge} 5$ D quark-l(-s):"-0.5...... $\mathrm{x}(+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}$
 $(+1 /+0.0) \times 0^{\wedge} 5 "+\mathbf{0 . 5} \ldots . . . \times(+(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5-\left(-0.5 \ldots . . . \times \mathrm{x}(+(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times\right.$ $1 / 3 \mathrm{x}(-0.0 \backslash-1) \times 0^{\wedge} 5 \underline{\boldsymbol{D}}$ quark-r(-s):"-0.5...... $\mathrm{x}(+(1)) \mathrm{x}(-1)^{\wedge} 2 \mathrm{x}(+1)^{\wedge} 2 \mathrm{x} 1 \mathrm{x} 1 \ldots . . . / 3 \mathrm{x}(+\mathbf{1} /+0.0) \mathrm{x} 0^{\wedge} 5$ ") AND/OR (Z particle-l(1,+p):"+(1...... or 0) $\times(+(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \times(+\mathbf{1} /+0.0) \times 0 \wedge 5$ " \boldsymbol{Z} particle-

 $\left.\left.(+1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots \ldots \times(5 / 5))) \times(+1 /+0.0) \times 0 \wedge 5 "\right)\right)-\left(Z\right.$ particle $-r(1,+p): "+\left(1\right.$. or 0) x $(+(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times$ $1 / 3 \times(+1 /+0.0) \times 0^{\wedge} 5 " Z$ particle-r(1):"+(1..... or 0) x $(+(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times 1 \ldots \ldots . / 3 \times(-0.01-1) \times 0 \wedge 5 "-(\mathbf{W}$ particle-r:"-(0 or 1.......) $\times(+(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times 1 \ldots . . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5 "$ W particle-r($+\boldsymbol{p}$): "-(0 or 1.......) x $\left.\left.\left.\left.(+(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times 1 \ldots . . / 3 \times(+1 /+0.0) \times 0^{\wedge} 5 "\right)\right)\right)\right)+\left(\left(z-1: "+0.5 \times(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times(2, / 3 /\right.\right.$
 $(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times(-0.0 \backslash-1) \times 0^{\wedge} 5 z-l(-s): "-0.5 . \ldots . . \times(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times(2, / 3 /$ $\left.(1 \ldots \ldots x(5 / 5))) \times(+\mathbf{1} /+0.0) \times 0^{\wedge} 5 "\right)$ - (z-r:"+0.5...... x (+(1)) x (-1)^2 x (+1) x $1 \times 1 \ldots . . / 3 \times(+\mathbf{1} /+0.0) \times 0 \wedge 5 "+\mathbf{0 . 5}$. x $(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5-\left(-\mathbf{0 . 5} . \ldots . . \times(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times 1 \ldots \ldots .3 \times(-0.0 \backslash-1) \times 0 \wedge 5 z-r(-\right.$ s): "-0.5...... $\left.\left.\times(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times 1 / 3 \times(+1 /+0.0) \times 0^{\wedge} 5 "\right)\right)$ AND/OR (W particle-l(1,+p):"1...... x (+(1)) x ($1)^{\wedge} 2 \times(+1) \times 1 \times(2, / 3 /(1 \ldots \ldots \times(5 / 5))) \times(+1 /+0.0) \times 0^{\wedge} 5$ " W particle-l(1):"+(1...... or 0) x $(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times(2, / 3$ $/(1 \ldots \ldots x(5 / 5))) \times(-0.0 \backslash \mathbf{- 1}) \times 0^{\wedge} 5 "-(\mathbf{N}$ particle-1:"-(0 or $1 \ldots \ldots . . .) \times.(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5)))$ x $(-0.0 \backslash-$
 particle $-\boldsymbol{r}(1,+\boldsymbol{p}): "+(1 \ldots \ldots$ or 0$) \times(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times 1 \ldots \ldots / 3 \times(+1 /+0.0) \times 0^{\wedge} 5 " W$ particle $-r(1): "+(1 . \ldots .$. or 0$) \times$ $(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5 "-(N$ particle-r:"-(0 or $1) \times.(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times 1 \ldots . . . / 3 \times$ $(-0.01-1) \times 0^{\wedge} 5 " N$ particle $-r(+p): "-(0$ or $\left.\left.\left.1) \times.(+(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times 1 \ldots \ldots / 3 \times(+1 /+0.0) \times 0^{\wedge} 5 "\right)\right)\right)-(((\underline{\mathbf{U}}$ quark-

 $\left.\left.l(-s): "-\mathbf{0 . 5} \mathrm{x}(+(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1) \mathrm{x} 1 \mathrm{x}(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))) \mathrm{x}(+\mathbf{1} /+0.0) \mathrm{x} 0^{\wedge} 5 "\right)\right)-(\underline{\mathbf{U}} \mathbf{q u a r k - r}:$ "+0.5...... $\mathrm{x}(+(1)) \mathrm{x}$
 $(+(1)) \times(+1)^{\wedge} 2 \times(-1) \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0 \wedge 5 \underline{U}$ quark-r $(-s): "-0.5 \ldots \ldots \times(+(1)) \times(+1)^{\wedge} 2 \times(-1) \times 1 \times 1 / 3 \times$ $(+1 /+0.0) \times 0 \wedge 5 ")$ AND/OR (M particle-l(1,+p):"+(1...... or 0) x $(+(1)) \times(+1)^{\wedge} 2 \times(-1) \times 1 \times(2, / 3 /(1 \ldots x(5 / 5)))$ x $(+1 /+0.0) \times 0 \wedge 5 " M$ particle-l(1):"+(1...... or 0) x (+(1)) x (+1)^2 x (-1) x $1 \times(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \times(-0.01-\mathbf{1}) \times 0 \wedge 5 "-(\mathbf{Z}$
 1.......) $\left.\left.\mathrm{x}(+(1)) \mathrm{x}(+1)^{\wedge} 2 \times(-1) \times 1 \times(2, / 3 /(1 \ldots \ldots \mathrm{x}(5 / 5))) \mathrm{x}(+1 /+0.0) \times 0 \wedge 5 "\right)\right)-($ (M particle $-r(1,+\boldsymbol{p}): "+(1$. or 0) $\mathrm{x}(+(1))$ $\mathrm{x}(+1)^{\wedge} 2 \times(-1) \times 1 \times 1 \ldots \ldots . / 3 \times(+1 /+0.0) \times 0 \wedge 5 "$ M particle $-r(1): "+(1$. or 0$) \times(+(1)) \times(+1)^{\wedge} 2 \times(-1) \times 1 \times 1 \ldots . . / 3 \times(-$
 1.......) x (+(1)) x (+1)^2 x (-1) x $1 \times 1 \ldots . . / 3 \times(+1 /+0.0) \times 0 \wedge 5 ")))-\left(\left(\left(D\right.\right.\right.$ quark-l:"+0.5...... x $(+(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times$ $(2,3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \times(+\mathbf{1} /+0.0) \times 0^{\wedge} 5 "+\mathbf{0 . 5} \ldots \ldots . . \mathrm{x}(+(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \times(-0.0 \backslash-\mathbf{1}) \times 0^{\wedge} 5-(-$ 0.5...... $\times(+(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots \ldots \times(5 / 5))) \mathrm{x}(-0.01-1) \times 0 \wedge 5$ D quark-l(-s):"-0.5...... $\mathrm{x}(+(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

 Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com$\left.\left.1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots x(5 / 5))) \times(+1 /+0.0) \times 0 \wedge 5 "\right)\right)-\left(\mathbf{D}\right.$ quark-r:"+0.5...... $\times(+(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times 1 / 3 \times$
 $1 / 3 \times(-0.0-1) \times 0 \wedge 5$ D quark-r(-s):"-0.5...... x (+(1)) x (+1)^2 $\mathrm{x}(-1)^{\wedge} 2 \mathrm{x} 1 \mathrm{x} 1 / 3 \mathrm{x}(+\mathbf{1} /+0.0) \mathrm{x} 0^{\wedge} 5$ ")) AND/OR (Z particle $-l(1,+p): "+(1$. or 0$) \times(+(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times(2,3 /(1 \ldots . . . \times(5 / 5))) \times(+\mathbf{1} /+0.0) \times 0 \wedge 5$ " \boldsymbol{Z} particle-
 $(+(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots . . . x(5 / 5))) \times(-0.01-1) \times 0 \wedge 5 " W$ particle-l(+p):"-(0 or 1.......) x (+(1)) x (+1)^2 x ($1)^{\wedge} 2 \mathrm{x} 1 \times(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(+1 /+0.0) \mathrm{x} 0 \wedge 5$ ") $)$
 0) $\times(+(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5 "-(W$ particle-r:"-(0 or $1) \times.(+(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times$ $1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5 "$ W particle-r $(+\boldsymbol{p})$:"-(0 or $\left.\left.\left.1\right) \times(+(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times 1 \ldots \ldots / 3 \times(+1 /+0.0) \times 0^{\wedge} 5 "\right)\right)$)
 $\mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(-0.0 \backslash \mathbf{- 1}) \mathrm{x} 0 \wedge 5-\left(-\mathbf{0 . 5} \ldots . . . \mathrm{x}(+(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(+1) \mathrm{x} 1 \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(-0.0 \backslash \mathbf{1}) \mathrm{x} 0^{\wedge} 5 \boldsymbol{A}-l(-\right.$

 AND/OR (\boldsymbol{N} particle-l(1,+p):"+(1..... or 0) x (+(1)) x (-1$)^{\wedge} 3 \times(+1) \times 1 \times(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \times(+\mathbf{1} /+0.0) \times 0^{\wedge} 5 " N$ particle-l(1):"+(1..... or 0) x (+(1)) x (-1)^3 x (+1) x $1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times(-0.0 \backslash-1) \times 0^{\wedge} 5 "-(G$ particle-l:"-(0 or 1.......) $\mathrm{x}(+(1)) \times(-1)^{\wedge} 3 \mathrm{x}(+1) \times 1 \times(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(-0.0 \backslash-\mathbf{1}) \times 0 \wedge 5 " \boldsymbol{G}$ particle-l(+p):"-(0 or 1.......) $\mathrm{x}(+(1)) \mathrm{x}(-$ $\left.\left.1)^{\wedge} 3 \times(+1) \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times(+1 /+0.0) \times 0 \wedge 5 "\right)\right)-\left(N\right.$ particle-r(1,+p):"+(1..... or 0) x $(+(1)) \times(-1)^{\wedge} 3 \times(+1) \times 1$ x $1 / 3 \times(+1 /+0.0) \times 0 \wedge 5 " N$ particle-r(1):"+(1...... or 0) x (+(1)) x $(-1)^{\wedge} 3 \times(+1) \times 1 \times 1 \ldots . . / 3 \times(-0.0-\mathbf{1}) \times 0 \wedge 5 "$-(G particle-r:"-(0 or 1.......) x (+(1)) x (-1$)^{\wedge} 3 \times(+1) \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0 \wedge 5 "$ G particle-r(+p):"-(0 or 1.......) x (+(1)) x
 $(+\mathbf{1} /+0.0) \times 0 \wedge 5 "+\mathbf{0 . 5} \times(+(1)) \times(-1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots x(5 / 5))) \times(-0.0 \backslash-\mathbf{1}) \times 0 \wedge 5-\left(-\mathbf{0 . 5} \mathrm{x}(+(1)) \times(-1)^{\wedge} 3 \times 1 \times(2, / 3\right.$
 - (X-r:"+0.5...... x $(+(1)) \times(-1)^{\wedge} 3 \times 1 \times 1 \ldots . . / 3 \times(+\mathbf{1} /+0.0) \times 0 \wedge 5 "+\mathbf{0 . 5} \times(+(1)) \times(-1)^{\wedge} 3 \times 1 \times 1 \ldots . . . / 3 \times(-0.0 \backslash-1) \times 0 \wedge 5-$
 $\left.(+1 /+0.0) \times 0^{\wedge} 5 "\right)$ If the Axion is like this $\mathbf{A}(0.5 \mathrm{spin}, 2 / 3$ charge $)+\mathrm{X}(-0.5 \mathrm{spin}, 1 / 3$ charge), it is neutral. AND/OR (G particle-l(1,+p):"+(1..... or 0) x (+(1)) x (-1$)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots \ldots \times(5 / 5))) \times(+1 /+0.0) \times 0 \wedge 5 " G$ particle-l(1):"+(1...... or 0) $\times(+(1)) \times(-1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots x(5 / 5))) \times(-0.0 \backslash-1) \times 0^{\wedge} 5 "-\left(N\right.$ particle-1:"-(0 or 1.......) x $(+(1)) \times(-1)^{\wedge} 3 \times 1 \times(2, / 3 /$ (1......x(5/5))) x (-0.0 $\mathbf{- 1}$)x0^5" N particle-l(=p!, *STOP!):"-(0 or 1.......) x (+(1)) x (-1$)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots x(5 / 5))) \times$ $(+1 /+0.0) \times 0^{\wedge} 5$ ") The main dimension in N particle $(+1 /+0.0)$ is not with another dimension like this $1+1$ or this $1+1$. It is mainly based on both $+1 \ldots \ldots$. and 0.000000 only.
(\boldsymbol{G} particle $-\boldsymbol{r}(\mathbf{1},+\boldsymbol{p}):$ " $+(\mathbf{1} \ldots \ldots$ or $\mathbf{0}) \times(+(1)) \times(-1)^{\wedge} 3 \times 1 \times 1 \ldots \ldots / 3 \times(+1 /+0.0) \times 0^{\wedge} 5 " \boldsymbol{G}$ particle $-\boldsymbol{r}(\mathbf{1}): "+(1 . \ldots .$. or $\mathbf{0}) \times$ $(+(1)) \times(-1)^{\wedge} 3 \times 1 \times 1 \ldots \ldots . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5 "-(\mathbf{N}$ particle-r:"-(0 or $1) \times.(+(1)) \times(-1)^{\wedge} 3 \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0 \wedge 5 "$ N particle-r(=p!,STOP!):"(0 or 1........) x (+(1)) x (-1$\left.)^{\wedge} 3 \times 1 \times 1 \ldots . . / 3 \times(+1 /+0.0) \times 0^{\wedge} 5^{\prime \prime}\right)$))) If this $+\mathbf{1} /+0.0$ newly originated (new start) superposition is unstable or disconnected, then N needs 1 or $+0.5-0.5$ dimensions to be stable and continue, or perhaps it would not exist in the moment that other particles exist.!
$-\left(\left(\left(+\mathbf{0 . 5} \times(-(1)) \times(+1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots x(5 / 5))) \times(+\mathbf{1} /+0.0) \times 0 \wedge 5+\mathbf{0 . 5}\right.\right.\right.$. x $(-(1))$ x $(+1)^{\wedge} 3 \times 1 \times(2, / 3 /$
 $\left.\left.(+1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times(+\mathbf{1} /+0.0) \times 0^{\wedge} 5\right)\right)-\left(+\mathbf{0 . 5} . \ldots . . . \times(-(1)) \times(+1)^{\wedge} 3 \times 1 \times 1 \ldots \ldots / 3 \times(+1 /+0.0) \times 0 \wedge 5+\mathbf{0 . 5}\right.$. x
 $\left.(+1)^{\wedge} 3 \mathrm{x} 1 \mathrm{x} 1 \ldots . . / 3 \mathrm{x}(+\mathbf{1} /+0.0) \mathrm{x} 0 \wedge 5\right)$) AND/OR (+(1...... or 0) x (-(1)) x (+1)^3 x $1 \mathrm{x}(2, / 3 /(1 \ldots \ldots x(5 / 5)))$ x
 $1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times(-0.0 \backslash \mathbf{1}) \times 0^{\wedge} 5-(0$ or $\left.\left.1) \times.(-(1)) \times(+1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times(+\mathbf{1 / + 0 . 0}) \times 0^{\wedge} 5\right)\right)-$ (+(1...... or 0) x (-(1)) x (+1)^3 x $1 \times 1 \ldots . . / 3 \times(+1 /+0.0) x 0 \wedge 5+\left(1 \ldots . .\right.$. or 0) x $(-(1)) \times(+1)^{\wedge} 3 \times 1 \times 1 \ldots \ldots . / 3 \times(-0.0 \backslash-1) \times 0 \wedge 5-$

 $(+1)^{\wedge} 3 \times(-1) \times 1 \times(2, / 3 /(1 \ldots . . . x(5 / 5))) \times(-0.0 \backslash-1) \times 0^{\wedge} 5-\left(-0.5\right.$. x $(-(1)) \times(+1)^{\wedge} 3 \times(-1) \times 1 \times(2, / 3 /(1 \ldots . . . x(5 / 5))) \times(-$

 0) $\mathrm{x}(-(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x}(-1) \mathrm{x} 1 \times(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(+\mathbf{1} /+0.0) \times 0^{\wedge} 5+(\mathbf{1} \ldots .$. or $\mathbf{0}) \times(-(1)) \mathrm{x}(+1)^{\wedge} 3 \mathrm{x}(-1) \mathrm{x} 1 \mathrm{x}(2, / 3 /$ $(1 \ldots \ldots x(5 / 5))) \times(-0.0 \backslash \mathbf{1}) \times 0^{\wedge} 5-\left(-(0\right.$ or $1 \ldots) \times.(-(1)) \times(+1)^{\wedge} 3 \times(-1) \times 1 \times(2, / 3 /(1 \ldots . . . \times(5 / 5))) \times(-0.0 \backslash-1) \times 0^{\wedge} 5-(0$ or

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

 Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com1.......) x (-(1)) x (+1)^3x(-1) x $1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times(+1 /+0.0) \times 0 \wedge 5))-\left(+(\mathbf{1}\right.$. or 0$) \times(-(1)) \times(+1)^{\wedge} 3 \times(-1) \times 1 \times$
 $\mathrm{x}(-1) \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash \mathbf{- 1}) \times 0^{\wedge} 5-(0$ or $\left.\left.\left.1) \times.(-(1)) \times(+1)^{\wedge} 3 \times(-1) \times 1 \times 1 \ldots \ldots .3 \times(+\mathbf{1} /+0.0) \times 0 \wedge 5\right)\right)\right)-((+\mathbf{0 . 5} . \ldots .$. x $(-$ (1)) x $(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots . . . x(5 / 5))) \times(+1 /+0.0) \times 0 \wedge 5+0.5 \ldots . . . \times(-(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times(2, / 3 /$

 $1 . \ldots . . / 3 \times(-0.0 \backslash-\mathbf{1}) \times 0^{\wedge} 5 \mathbf{- 0 . 5}$. x $\left.\left.(-(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times 1 \ldots . . / 3 \times(+\mathbf{1} /+0.0) \times 0^{\wedge} 5\right)\right)$ AND/OR (+(1..... or 0) x (-(1)) $\mathrm{x}(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(+1 /+0.0) \times 0^{\wedge} 5+(1 \ldots \ldots$ or 0$) \times(-(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times(2, / 3 /$
 1.......) $\left.\left.\times(-(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots x(5 / 5))) \times(+\mathbf{1} /+0.0) \times 0^{\wedge} 5\right)\right)-\left(+(1 \ldots \ldots\right.$ or $\mathbf{0}) \times(-(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times$ $1 \times 1 \ldots . . / 3 \times(+1 /+0.0) \times 0^{\wedge} 5+\left(\mathbf{1}\right.$. or 0) $\times(-(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times 1 \ldots . . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5-(-(0$ or $1) \times.(-(1)) \times$ $(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-\mathbf{1}) \times 0^{\wedge} 5-(0$ or $\left.\left.\left.\left.1) \times.(-(1)) \times(-1)^{\wedge} 2 \times(+1)^{\wedge} 2 \times 1 \times 1 \ldots \ldots / 3 \times(+1 /+0.0) \times 0^{\wedge} 5\right)\right)\right)\right)+$ $\left(\left(+\mathbf{0 . 5} \ldots \ldots \times(-(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times(2, / 3 /(1 \ldots \ldots \times(5 / 5))) \times(+\mathbf{1} /+0.0) \times 0^{\wedge} 5+\mathbf{0 . 5} \ldots \ldots \times(-(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times(2, / 3 /\right.\right.$

 $(+1) \times 1 \times(2, / 3 /(1 \ldots . . . \times(5 / 5))) \times(+1 /+0.0) \times 0^{\wedge} 5+\left(1 \ldots \ldots\right.$. or 0) x $(-(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times(-0.01-$ 1)x0^5 $-\left(-(0\right.$ or $1) \times.(-(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times(-0.01-1) \times 0^{\wedge} 5-(0$ or $1) \times.(-(1)) \times(-1)^{\wedge} 2 \times$ $\left.\left.(+1) \times 1 \times(2, / 3 /(1 \ldots x(5 / 5))) \times(+1 /+0.0) \times 0^{\wedge} 5\right)\right)-\left(+\left(1 \ldots . .\right.\right.$. or 0) $\times(-(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times 1 \ldots \ldots / 3 \times(+1 /+0.0) \times 0 \wedge 5$ $+(1 \ldots \ldots$ or 0$) \times(-(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5-\left(-(0\right.$ or $1) \times.(-(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times 1 / 3 \times(-$ $0.0 \backslash-\mathbf{1}) \times 0 \wedge 5-(0$ or $\left.\left.\left.1) \times.(-(1)) \times(-1)^{\wedge} 2 \times(+1) \times 1 \times 1 \ldots \ldots . / 3 \times(+\mathbf{1} /+0.0) \times 0 \wedge 5\right)\right)\right)-\left(\left(\left(+\mathbf{0} .5 \ldots \ldots . . \times(-(1)) \times(+1)^{\wedge} 2 \times(-1) \times 1\right.\right.\right.$ x (2,/3 / (1......x(5/5))) x (+1/+0.0)x0^5 +0.5...... x (-(1)) x (+1)^2 x (-1) x $1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5)))$ x ($-0.0 \backslash-\mathbf{1}) x 0^{\wedge} 5$-(-

 $\left.\mathrm{x}(+1)^{\wedge} 2 \times(-1) \mathrm{x} 1 \times 1 \ldots . . / 3 \mathrm{x}(+\mathbf{1} /+0.0) \mathrm{x} 0^{\wedge} 5\right)$) AND/OR (+(1..... or 0) x $(-(1)) \mathrm{x}(+1)^{\wedge} 2 \times(-1) \mathrm{x} 1 \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5)))$

 $\left.(+1 /+0.0) \times 0^{\wedge} 5\right)$) - (+(1...... or 0) x (-(1)) x (+1)^2 x (-1) x $1 \times 1 \ldots . . / 3 \times(+1 /+0.0) \times 0^{\wedge} 5+(1$. or $\mathbf{0}) \times(-(1)) \times(+1)^{\wedge} 2 \times(-$
 $\left.\left.\left.(+1)^{\wedge} 2 \times(-1) \times 1 \times 1 \ldots \ldots / 3 \times(+1 /+0.0) \times 0 \wedge 5\right)\right)\right)-\left(\left(\left(+\mathbf{0} .5 \ldots \ldots \times(-(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5)))\right.\right.\right.$ x $(+1 /+0.0) \times 0^{\wedge} 5+\mathbf{0 . 5} \ldots . . . \mathrm{x}(-(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}(-1)^{\wedge} 2 \times 1 \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(-0.0 \backslash-1) \mathrm{x} 0^{\wedge} 5-\left(-\mathbf{0 . 5} \mathrm{x}(-(1)) \mathrm{x}(+1)^{\wedge} 2 \mathrm{x}\right.$
 $\left.\left.(+1 /+0.0) \times 0^{\wedge} 5\right)\right)-\left(+0.5 \ldots . . . \times(-(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times 1 \ldots . . / 3 \times(+1 /+0.0) \times 0^{\wedge} 5+0.5 \ldots . . . \times(-(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1\right.$
 $\left.1)^{\wedge} 2 \times 1 \times 1 \ldots \ldots . / 3 \times(+\mathbf{1} /+0.0) \times 0^{\wedge} 5\right)$) AND/OR (+(1..... or 0) x $(-(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times$ $(+1 /+0.0) \times 0^{\wedge} 5+\left(1 . \ldots .\right.$. or 0) x $(-(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times(-0.0 \backslash-1) \times 0^{\wedge} 5-(-(0$ or $1 \ldots) \times.(-(1)) \times$ $(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times(2, / 3 /(1 \ldots . . . x(5 / 5))) x(-0.0 \backslash-1) \times 0^{\wedge} 5-(0$ or $1 \ldots) \times(-(1)) x(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times(2, / 3 /$
 (1)) $\mathrm{x}(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0^{\wedge} 5-\left(-(0\right.$ or $1 \ldots) \times.(-(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times 1 \ldots \ldots / 3 \times(-0.0 \backslash-1) \times 0 \wedge 5-$ (0 or $\left.\left.\left.1) \times(-(1)) \times(+1)^{\wedge} 2 \times(-1)^{\wedge} 2 \times 1 \times 1 \ldots \ldots / 3 \times(+\mathbf{1} /+0.0) \times 0^{\wedge} 5\right)\right)\right)-\left(\left(+\mathbf{0} .5 \ldots \ldots \times(-(1)) \times(-1)^{\wedge} 3 \times(+1) \times 1 \times(2, / 3 /\right.\right.$ $(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(+\mathbf{1} /+0.0) \mathrm{x} 0 \wedge 5+\mathbf{0 . 5} \mathrm{x}(-(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(+1) \mathrm{x} 1 \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(-0.0 \backslash-\mathbf{1}) \mathrm{x} 0 \wedge 5-(-\mathbf{0 . 5} \mathrm{x}(-$

 x $1 \ldots \ldots . / 3 \times(+1 /+0.0) \times 0 \wedge 5)$) AND/OR (+(1...... or 0) x ($-(1)) \mathrm{x}(-1)^{\wedge} 3 \mathrm{x}(+1) \mathrm{x} 1 \mathrm{x}(2, / 3 /(1 \ldots . . . \mathrm{x}(5 / 5))) \mathrm{x}(+\mathbf{1} /+0.0) \mathrm{x} 0 \wedge 5$ +(1...... or 0) x (-(1)) x (-1)^3x(+1)x $1 \times(2, / 3 /(1 \ldots . . . x(5 / 5))) \times(-0.0 \backslash-1) \times 0 \wedge 5-\left(-(0\right.$ or $1) \times(-(1)) x(-1)^{\wedge} 3 \times(+1) \times 1$
 $\left(+(1 \ldots \ldots\right.$ or 0$) \times(-(1)) \times(-1)^{\wedge} 3 \times(+1) \times 1 \times 1 \ldots . . / 3 \times(+1 /+0.0) \times 0 \wedge 5+\left(1 \ldots . .\right.$. or 0) x $(-(1)) \times(-1)^{\wedge} 3 \times(+1) \times 1 \times 1 \ldots \ldots . / 3 \times(-$ $0.0 \backslash-1) \times 0 \wedge 5-\left(-(0\right.$ or $1 \ldots) \times.(-(1)) \times(-1)^{\wedge} 3 \times(+1) \times 1 \times 1 \ldots \ldots . / 3 \times(-0.0 \backslash-1) \times 0 \wedge 5-(0$ or $1 \ldots \ldots .) \times.(-(1)) \times(-1)^{\wedge} 3 \times(+1) \times 1 \times$
 $1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots x(5 / 5))) \times(-0.0 \backslash \mathbf{1}) \times 0^{\wedge} 5-\left(-0.5 \ldots \ldots .\right.$. x $(-(1)) \times(-1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots x(5 / 5))) \times(-0.0 \backslash-1) \times 0 \wedge 5-$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com
 $(+\mathbf{1} /+0.0) \times 0^{\wedge} 5+\mathbf{0 . 5} \times(-(1)) \times(-1)^{\wedge} 3 \times 1 \times 1 \ldots . . / 3 \times(-0.0 \backslash-1) \times 0 \wedge 5-\left(-\mathbf{0 . 5} \times(-(1)) \times(-1)^{\wedge} 3 \times 1 \times 1 \ldots \ldots . / 3 \times(-0.0 \backslash-\right.$

 (1)) x $(-1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \times(-0.0 \backslash-1) \times 0 \wedge 5-(0$ or $1 \ldots \ldots .) \times.(-(1)) \times(-1)^{\wedge} 3 \times 1 \times(2, / 3 /(1 \ldots \ldots x(5 / 5))) \mathrm{x}$ $\left.\left.(+\mathbf{1} /+0.0) \times 0^{\wedge} 5\right)\right)-\left(+(\mathbf{1}\right.$. or 0$) \times(-(1)) \times(-1)^{\wedge} 3 \times 1 \times 1 \ldots . . / 3 \times(+\mathbf{1} /+0.0) \times 0 \wedge 5+(1 \ldots \ldots$ or $\mathbf{0}) \times(-(1)) \times(-1)^{\wedge} 3 \times 1 \times 1 \ldots . . / 3$
 $\left.\left.\left.\left.\left.(+1 /+0.0) \times 0^{\wedge} 5\right)\right)\right)\right)\right) \mathbf{x}($ the wave function)) \mathbf{x} (the polarized wave function)

Likely, two dependent/related formations would appear AND disappear together, or the first formation OR second formation would appear or disappear per moment during the interactions. Both of them would coexist in the successive universes. Those 2 possibilities are represented in the calculation separately using the AND/OR term. Everything is a linear moment, and the expansion increases them, making the relative time and gaps on emergence. The first universe could continue from 0 to 0.00000 range until interacting with the next origination of dimensions from the 0.00000 point $(+-1 \ldots \ldots .+0.000000+-0.000000 \backslash-+1 \ldots \ldots)$. But it could possibly be the next significant origin of dimensions even if it had to share its dimensions with the previous universe. Neutrino shows the potential to reach the last (0.000000) point on $(+\mathbf{1} /+0.0) \mathrm{x} 0^{\wedge} 5$ superposition. Sharing its dimensions with the previous/next universe can change neutrinos (right-handed matter neutrinos and left-handed antimatter neutrinos are missing). The first universe could start from this initial state $(+-0-+0)^{\wedge} 6$. But the next initial state could be a little bit different. That formation could start from the last point (edge), making the next start or continuing the previous universe. E.g.,
$(+-0.00000-+0.00000)^{\wedge} 6$ OR $(-0.00000+0.00000)^{\wedge} 6=$ the second origin of MATTER and/or ANTIMATTER $=\left\{(+0.00000-0.00000)^{\wedge} 6\right.$ and $\left.(-0.00000+0.00000)^{\wedge} 6\right\}$ OR $\left\{(-0.00000+0.00000)^{\wedge} 6\right.$ almost without initial antimatter $\}$ The universe could evolve from 0 to 0.0 and so on, making dimensions ($1 \times \mathrm{n}$) to balance every 0.0 and $0.0 \times 0^{\wedge} \mathrm{n}$ positions, becoming superpositions. Zero (0) could continue making both 0.0 and 1 simultaneously. And it could continue making the radius in the universe from 0 to $\pm 0.00000 \mathrm{x} 0^{\wedge} \mathrm{n}$ continuing the expansion. Accepting that as the origin of energy is easier/logical than believing an illogical story. And creating a God from nothing is not scientific.

8. COMPARING THE MATHEMATICAL STRUCTURES AND DIMENSIONAL SETS WITH THE STANDARD MODEL OF ELEMENTARY PARTICLES

According to the mathematical structures, elementary particles and forces are generally 1D, 2D, and 3D (standard 3 dimensions: up-down, left-right, forward-back) dimensional sets. So we can simplify the standard model of elementary particles by removing the 2-dimensional (2D) and 3-dimensional (3D) elementary particles (E.g., 2-dimensional Charm Quark, 3-dimensional Top Quark, etc.). The right-handed, left-handed, and antimatter particles would be mentioned separately. But those elementary particles would appear in the dimensional structures as plus and minus charges and due to interactions. Right-handed: the direction of spin is the same as the direction of motion. Left-handed: the directions of spin and motion are opposite.

As an assumption, likely some elementary particles get mass depending on dimensional interactions of the Charge and/or Spin. E.g., Up Quark has a $2 / 3$ Spin. Therefore $2 / 3-3 / 3$ is equal to $-1 / 3$. If so, only 1 dimension gets mass. Down Quark has a $-1 / 3$ Spin like $3 / 3-1 / 3$ equals $2 / 3$. Likely, it has 2 dimensions to get mass. The Down quark is nearly 2 times more massive than the Up Quark. But electrons (minimum $-3 / 3$ or -1) and neutrinos (maximum $0 / 3$ or 0) don't have an extra or minor charge. Electrons would get mass using the Spin dimensions (1/2). Neutrinos are asymmetric (E.g., only lefthanded, Neutrino Oscillation). And they don't interact with the Higgs field to get mass.

Space cannot bend without quantum impacts as space itself is quantum particles. Even if spacetime geometry shows geometric gravity, quantum gravity can emerge on interactions of particles that depend on entropy. Hence, the early stages of our universe in the standard model of cosmology shouldn't be based entirely on gravity. So using General Relativity to say that our universe started from a tiny scale when the time was around Planck time would be wrong.

Dimensional Interactions of electrons, quarks, forces, Higgs Boson, etc.
Most likely, the 0.5 Spin and the 6 dimensions in Electrons (approximately, E: $+0.5 \times 6 / 3-(+0.5 \times 6 / 3)$) would make an unstable dimension (1) on the interaction of unstable Spin (0.5) or on the Spin itself. And suppose the \mathbf{M} dimensional set (elementary particle, $\mathbf{M}:-1 \times 5 / 3$) in the dimensional structure is with -1 dimension (-1 as Spin or like a force moment) and +5 dimensions that remove and fill it with -1 as a replacement of the dimension. In that case, that elementary particle can attract or receive 1 dimension from electrons on entanglements between particles, making a cyclic process through dimensions in space like the Magnetic Monopoles. That symmetric process could keep that elementary particle (M) as a relatively satisfied cyclic force. Also, Photons ($\mathbf{P}:-1 \times 6 / 3$) could give dimensions to fill \mathbf{M} against electrons as an interaction between them (like electromagnetism). \mathbf{P} is in group 1 (but there are more types/sets, too), and \mathbf{E} is in group 2 in the dimensional structure.

Protons (the 3 quarks as +1 Charge in the nucleus with Gluons) can accelerate when a particle accelerator (E.g., LHC) accelerates Protons in electromagnetic fields. And during that process, Protons can absorb electromagnetic fields increasing the Kinetic energy. The dimensional sets of electrons are filled with $-(+6)$ dimensions between 3 unstable dimensions as $-(+6) / 3$ in the dimensional set, which is called the -1 Charge, or $-3 / 3$ Charge in electrons (negative charge) in quantum physics. It seems electrons are stable enough to stay alone, but they interact with other particles on Charge and Spin. According to the calculation, the Spins of particles don't seem stable (E.g.: - $0.5 \times 6 / 3-0.5 \times 4 / 3$ can become $1 \times 5 / 3$ for a moment, and vice versa), as the Spins can change from 1 to $1 / 2$, or $1 / 2$ to 1 . And they can interact as stable particles and virtual particles. The 3 quarks in Protons have two types of dimensional sets called Up Quark (U: $0.5 \times 5 / 3$ and/or $-(0.5 \times 5 / 3)$) and Down Quark (D: $0.5 \times 4 / 3$ and/or $-(0.5 \times 4 / 3)$). The 2 Up Quarks have approximately $(0.5 \times 5 / 3)+$ $(0.5 \times 5 / 3)$ dimensions. The Down Quark has approximately $-(0.5 \times 4 / 3)$ dimensions that could interact, making the $+6 / 3$ Charge in Protons. It is the +1 Charge (as a total charge) in a Proton (positive charge) in quantum physics. The plus (+) and minus (-) sides/directions of the quarks possibly can change just like the change called color/flavor change (as mentioned in quantum mechanics) in quarks and Gluons $(\mathbf{G}:-(-1+1) / 3-(-1+1) / 3)$ in the nucleus. Or, they represent the Spin direction of particles (right-handed and left-handed particles) or matter and antimatter particles. They don't show only the matter particles and the antimatter particles as plus (+) and minus (-) results. As scientists see, there are righthanded quarks and right-handed electrons. Still, scientists couldn't find right-handed neutrinos as an anomaly (reasonably due to symmetry breaking/separating). So perhaps some interactions produce alternative particles/dimensional sets (E.g., antimatter neutrinos, left-handed neutrino, etc.) instead of right-handed neutrinos. There are two types of neutrinos (\mathbf{N}, \mathbf{N}) in area 1 of the most possible dimensional structure. Most likely, including the Sterile neutrino, which is almost recognizable as a different type of neutrino (In May 2018, MiniBooNE experiment: a possible signal indicating the existence of Sterile neutrinos.). Gluons (G) easily change the direction of traveling on interactions. Gluons have equally

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com

canceling dimensions as if they are dimensionless. Gluons don't have a 0.5 dimension. They don't have an asymmetry between plus and minus dimensions to make a strong long-distance entanglement between many dimensions. Instead, they have only 2 main dimensions $(-1+1)$ as a minus dimension and a plus dimension that could try to annihilate each other, making a 'force moment' (trying to cancel energy dimensions). For that reason, possibly Gluons are traveling while changing the direction of travel. It is a privilege to travel to many nearby locations again and again within a short/least period. They don't need to travel long distances to rotate the direction of travel to repeatedly reach many nearby locations. Gluons travel without taking the least distance, such as the distance that elementary particles usually take to rotate the direction of traveling by a force. As if Gluon is traveling faster than light, in terms of reaching the same location again and again quickly. But as a massless particle, surely Gluon is traveling at the speed of light (c) from one location to the nearest location.

There are more than 6 typical dimensions in a dimensional set of the Higgs boson (H: $(+1 \times 6 \times 0.5) / 3$ and/or $-(+1 \times 6 \times 0.5) / 3)$ becoming unstable with the extra dimensions. These ($+1 \times 6 \times 0.5$)/3 dimensions made the Higgs boson (smallest/earliest Higgs boson) highly unstable. As seemingly, two unstable extra dimensions in it produce an unusual Spin. Perhaps, it's like a scalar field that can be in any direction, making a volume and causing particles to have mass. According to Abhidhamma, there is an effective (vital) material form (Rupā) called the Life Faculty (Jīvitindriya) in the group of concretely produced (Nipphanna) materials. And they stay with a group of matter called abstract (Anipphanna) material forms (like quantum foam) in the 28 types of material forms. Also, the Space Element called Ākāsa Dhātu is undoubtedly located in a dimensional structure. $*(6)$ "). However, there are 8 dimensions, or 8 dimensions with 3 unstable dimensions that can behave like 11 dimensions in a dimensional set, including a dimension as 0.5 . But if the 0.5 dimension is a combination/joint of 2 opposite dimensions ($+1-1$), then perhaps those 12 dimensions made the Higgs boson as if reaching the maximum of balanced dimensions in the symmetric dimensional set, including the 6 unstable dimensions. But likely, there are 11 dimensions (interactions) in the smallest Higgs Boson (in the 1st generation). However, the 8 or 9 dimensions ($1 \times 6 \mathrm{x}(0.5$ or $1-1)$) try to be stable within 3 unstable dimensions (/3) while emerging as 6 dimensions ($1 \times 3 \times(1-1)$) or 5 dimensions ($4+0.5$). They can make the main 3 -space and 1-time dimensions with the matter/antimatter dimensional sets using the 0.5 dimensions. If matter particles are high densities that emerged using vacuum space, their mass could emerge with space density.

9. USING THE DIMENSIONAL STRUCTURES TO COMPARE AND PREDICT

9.1.) According to the dimensional structures, most likely, there is a fundamental separation between large objects and small objects (E.g., between Black Holes and planets/gas) since the mathematics of the universe could make more than 1 main dimensional structure (more than 1 model of elementary particles). And with a cyclic process, those dimensional structures would continue, evolve, and shrink, as they are the only kind of dimensional structures that could exist before and after a Big Bounce.
9.2.) There are dimensional Spins (0.5 and 1) and unstable 3 dimensions ($/ 3$) in the dimensional structure. The positive, negative, and neutral charges of elementary particles are based on dimensions (E.g., $4 / 3,5 / 3,6 / 3$) and lower charges (E.g., $1 / 3,2 / 3)$. Both Up Quarks ($-(1 \times 1 \times 1 \times 2 / 3$) and/or ($1 \times 1 \times 1 \times 2 / 3$)) and Down Quarks ($(1 \times 1 \times 2 / 3)$ and/or $-(1 \times 1 \times 2 / 3))$ have extra charges. The mass/energy would depend on the symmetric capacity of entanglements. Presumably, dimensions are infinite (they may make a holographic universe from infinite lines) or end as a force moment or repeatedly, and don't curve/bend. Suppose a dimension is like an arrow towards a direction. If so, the 0.5 dimension is probably like a joint of two arrows trying to take a moment in both directions (or an arrow moment which is going to both directions!).
9.3.) Scientists (including Dr. Peter Higgs) could predict the existence of 'Higgs Boson'. As we now know, it has a mass of around 125 GeV . But some scientists expected a higher mass for the Higgs boson. I tried to compare the mathematical structures with the properties of elementary particles in the Standard Model (of particle physics) using ratios, patterns, etc. I compared a mathematical ratio in the dimensional groups with the standard mass of particles. I could guess that there is probably ANOTHER Higgs Boson with a mass around 4000 (or maximum 4800) GeV that can emerge as a 2dimensional (2D) Higgs Boson. The maximum energy produced in the 27 km long LHC is around 1000 GeV . And that energy is not enough to discover a relatively higher mass experimentally. But according to the dimensional structures, 3dimensional (3D) structures emerged in the universe first. The energy required to make the 3rd Higgs Boson (like a solid Higgs Boson) or higher energy/pressure would make a tiny Black Hole. E.g., Likely, the core of a massive dying star makes a tiny Black Hole that can grow.

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com

9.4.) Hypothetically describing what happens in the double-slit experiment.

It was difficult for theorists to explain the amazing results in the double-slit experiment theoretically. Because the doubleslit experiment shows that the elementary particles/fields behave like both waves and particles. How can we solve that mystery? Quantum objects passed the double-slit behaving like waves making a wave pattern on the screen. Still, when the things were MEASURED NEAR THE SCREEN, they behaved like they went back in time and returned to hit the screen behaving like particles, without making an interference pattern on the screen. As if our interaction with the quantum objects changed the history of the quantum objects.! Yet, suppose all the dimensions are time-based lines (lines of moments without a solid string and size). If so, the time can relatively change when we observe it using a detector and screen, as illusively, when the particles travel through the double-slit to hit the screen. Suppose the time dimensions can entangle between particles and observers. When we observe/see or measure a time dimension (when we interact with a dimension of a quantum object), that can probably entangle and change the time dimensions in both particles and observers at once. So the double-slit experiment is showing us something like a magic trick. However, the double-slit experiment showed us that the previous state in the quantum objects changed once we measured it. But during the doubleslit experiment, the observer observes waves of Electrons. When Electrons hit the screen, the screen becomes another observer. And then, both the screen and the first observer (the detector) would detect particles of Electrons on instant quantum entanglements between those two observers. If we look at it like that, we can guess that the quantum objects behave like particles when observers are unentangled. And they act like waves when there is only one observer (which is entangled to itself. Perhaps splitting the screen would unentangle it). Arguably, the dimensional sets and wave functions show the possibility of explaining that process. Suppose electric and magnetic moments in Electrons separate when the detector observes it. Then the magnetic moment can continue until it can find an electric moment on the screen or vice versa. And then a magnetic moment in the screen would go back to the Electron at the detector instantly using quantum entanglements, making two separate Electrons as complete Electrons again. But when we don't use a detector/observer, the screen becomes the only observer that can detect probabilistic positions of Electrons as waves on it. The observation is likely an interaction or interference that damages the structure of Electrons, observers, etc. We observe outputs of that damage (at the detector) with the final exchange between Electrons (on the screen). There is a similarity between that process and Heisenberg's uncertainty principle in quantum mechanics. But according to theories in quantum mechanics (wave function), quantum uncertainty is an unpredictable nature in elementary particles that happens whether we observe the quantum objects or not.
9.5.) According to Buddhism, there are four paramount natures in the universe called 'Paramārtha Dharma.' Those four (4) ultimate realities are known as Rupa (4 great material forms +24 material forms, or 28 in number), Chaitasika (52), Chitta, and Nibbana (timeless state). There are 8 fundamental formations called Pure Eight, including the 4 great fundamental forms (ghosts/Bhūta). According to the dimensional calculation, visibly, there are 4 fundamental dimensional sets (elements) and 48 more dimensional sets (8×6) as 24 pairs (8×3) on the same dimensional structure in every 2 sets in Area 1 of the structure. It appears that those sets are like electric moments and magnetic moments. But possibly a polarization (extremes in a wave function) could break that symmetry while emerging as matter and force particles. In that sense, surprisingly, there are 28 material formations in the dimensional structures too.
9.6.) Suppose there is an empty section (a separation) at the center of the dimensional structure (in the 3rd section). That section could disconnect the dimensional connection between the matter area and the opposite area.! The matter area could have mass, massless force-carriers, and possibly a causal potential to impact our emotions. The opposite area could have massless fields, just like more fields of fundamental emotions that don't have physical properties. There are 96 sets of dimensions as 48 pairs in the structures, depending on the first four formations. Consequently, those first and last formations could emerge as 52 formations that behave almost like massless/subjective fields. Perhaps those dimensional sets are like 52 fields of fundamental emotions. Possibly, like the 52 'Cetasika,' which are immaterial (Arūpa/Nāma) 'Mental Factors' that interact with the mind (Citta). More details are mentioned in Abhidhamma Piṭaka (the 'Basket of Higher Doctrine' (Higher Dhamma) of Theravada Buddhism). So it's difficult to say that we are just material phenomena. Suppose observations are like instant cancellations of opposite dimensions that make force moments. If so, they make non-existence or a balance between dimensions $(+1-1=0)$. Or, they can make timeless entanglements between them (as fixed $+1-1=0$). Perhaps that causes the observations (in mind) to change or interact with the material formations. Maybe that happens on a partial force in particles.

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com
9.7.) Analyzing the strange behavior of neutrinos to explain gravity, force, etc.

The strange behavior of neutrinos (\mathbf{N}) is most likely a result of a dimensional interaction in them (\mathbf{N} : $-(-1) / 3$ OR ' $(+0.5 /-$ $1)+(-0.5) / 3$ as filling gaps to be symmetric'). Strangely, the dimensional set in the structure, which most reasonably represents an 'electron neutrino,' has only 1 dimension within the 3 unstable dimensions (/3) as $1 / 3$. Yet, this $1 / 3$ dimensional set made the Spin (0.5) and Charge (0) on a transformation or interactions of dimensions. Arguably, it's like a type of symmetry breaking as $(0.5+05) / 3$. But it's located between the range of dimensional sets that generally represents force-carrying particles. If the Spin of a neutrino is equal to 0.5 or $1 / 2$, its dimension is unstable or connected to an unstable dimension. Or, it $(-(-1) / 3)$ can freely rotate in any direction. Thus, the dimensions in neutrinos could get the 0.5 Spin on a joint of it (1) as symmetry making with the unstable dimensions in Higgs Bosons, etc. As we know, neutrinos are almost asymmetric/irregular. When a neutrino travels, it makes 3 types of neutrinos (1D,2D,3D neutrinos: Electron N, Muon N, Tau N). If it Spins like a 0.5 dimension instead of $-(-1)$, then it or another dimension needs to be stable, making dimensions like 1-0.5 (as if making a muon neutrino on a mathematical symmetry). And after that, again, it becomes unstable while it obtains another unstable (-0.5) dimension. Thereupon, it needs to be stable again, making dimensions like $-1+0.5$ (as if making a tau neutrino). But the -1 dimension would be canceled on the previous +1 dimension making a force moment while changing the flavor/type of the neutrino again. Seemingly, General Relativity ignores the existence of Gravitons and the speed/flow of them/gravity when objects move fast. But likely, neutrinos attract dimensions (1 or 0.5) and change themselves and cancel or try to cancel some dimensions attracting more dimensions, making a small force like that.

10. MY PHILOSOPHY ABOUT THE SCIENTIFIC METHOD, PREDICTIONS \& IMAGINATIONS

Science should be based on reliable scientific arguments. Putting logically inconceivable (impossible) arguments between gaps in science is not real science. Some were based on misunderstandings or weaknesses in scientific methods, theories, and technologies (E.g., (1.) If quantum space decides the speed of light and photons are massless, isn’t $\mathrm{E}=\mathrm{mc}^{\wedge} 2>$ quantum? What is mass?. (2.) The Fine-structure constant (α) with reduced Planck $\mathrm{h}(\alpha=(\hbar / 137) / \hbar)=1 / 137$ or 0.007297351 . But, $\hbar=\mathrm{h} / 2 \pi, \mathrm{~h} / \hbar=6.283185311$. So the h makes $\alpha=0.007297351 \times 6.283185311=1 / 22$. Isn't it particles? $1: 22: 1==24$?). Some unscientific arguments move to gaps in science by cutting themselves.

Comparing a minimal imbalance between two related things with an unrelated big result to show a huge balance is an act of ignorance or a way to show a huge fake balance. "Cosmological constant is associated with Dark Energy (inconsistent/unknown energy: around 67.4 ± 0.5 (Hubble Tension) to 73.5 ± 1.4 (or 67 to 75) $\mathrm{km} / \mathrm{s} / \mathrm{Mpc}$). It expands space by acting against gravity between galaxies as a small imbalance between densities inside and outside the visible universe. But showing it as a huge balance instead of as a minimal imbalance is irrelevant/fake."

11. ASSUMPTIONS AND APPROXIMATIONS WITH QUESTIONS AND SUGGESTIONS

11.1.) "Standard gluon particles are massless, but there are gluons in vacuum space with a mass, and travel slower than the speed of light. *(18)" In the dimensional structure, there is a set of candidates for the standard elementary particles and particles in vacuum space. The calculation shows two sets/gluons. One with $(+1-1) / 3$ dimensions like the standard gluons. Another with $(+0.5+0) / 3$ dimensions like gluons in vacuum space. Because elementary particles most probably could get mass on the unstable Charge and Spin (unstable Spin:1/2). W and Z bosons don't have an unstable Spin (1/2), but they have dimensions like the dimensions/Charges in Fermions ($\mathrm{x} / 3$ without 0.5) to get mass from the Higgs fields. So they are massive too. The Standard Model has 9 unique and fundamental particles (Higgs particle, 4 Fermions, 4 Bosons). But "experiments show 19 extra parameters that need to be applied for the theory by hand (E.g., adding masses, charges, etc.) *(19)". Likely, there are around 19 particles hidden between the 9 elementary particles. E.g., $9+19=28$. And that seems like the 28 or $24(+4)$ material forms mentioned in Buddhism.
11.2.) If Spin 1 is not converting to $0.5+0.5$ dimensions itself somehow, then the Spin $1 / 2$ is emerging from an anti reaction onto a dimension. Or, it's the superposition of the final 1 and 0.0 pair $(+-1 /-+0.0)$ as an interaction of 1 with 0.0 that would try to cancel/stabilize it by making two separate sets of dimensions (($1 / 2+1 / 2) \mathrm{x}$ sets) as an interaction between them, like switching. Perhaps, that happens on all the particles becoming antimatter at once and returning.!
11.3.) According to the dimensional symmetries, the first wave function (+(1)-(-(1))) would make 4 probabilistic dimensional structures (1×4). And then, same like that the next wave function $(1 \times(+0.5 \ldots \ldots .-(-0.5 \ldots \ldots)) \times(2, / 3 /$ $(1 \ldots . . . x(5 / 5))-1 \ldots . . / 3))$ would make 16 probabilistic dimensional structures (4×4). But the polarized wave function $((+-1$ $/-+0.0+-0.0 \backslash-+1) \times 0^{\wedge} 5$) would make only 32 probabilistic dimensional structures (16×2) on the separation of the

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)

Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com
symmetry (polarization) during the first asymmetric interaction. The highest structure (last zone) and the lowest (first zone) could be highly polarized, connecting them to narrow points/destinations. And make them less habitable zones for any kind of living being. In that case, probably there are around 30 structures of dimensions that emerged on the wave functions as many worlds/planes (just like the 30(+1) worlds mentioned in Buddhism).
11.4.) Perhaps the 4 fundamental/great elements $\left((+1)^{\wedge} 3-\left((+\mathbf{1})^{\wedge} \mathbf{3} \mathbf{x}(\mathbf{- 1})^{\wedge} 1-(-1)^{\wedge} \mathbf{2} \mathbf{x}(+\mathbf{1})^{\wedge} \mathbf{2}\right)+(-\mathbf{1})^{\wedge} 2 \mathbf{x}(+\mathbf{1})^{\wedge} 1\right)$ collapse many times like this: $(((3+\mathbf{3}+1)+\mathbf{1}) \times 2+((3+\mathbf{3}+1)+\mathbf{1}) \times 2+((3+\mathbf{2}+\mathbf{2})+\mathbf{1}) \times 3+((3+\mathbf{2}+\mathbf{2})+* 1(* 1=1$ or 1 or 1 or 1$))) \times 4$ $=(16+16+24+8) \times 4=\mathbf{6 4} \times 4=\underline{\mathbf{2 5 6}}$ ("within a Great Aeon, 3 great elements change/reset 256 times, but continue as parts of the cyclic process. *(12)"). Energy collisions make antimatter. But a collapse wouldn't do that.!
11.5.) CMB radiation shows a lot of properties in the early universe (heat, density, matter distribution, etc.) in a very short period between 13.8-13.7 billion years. "But it doesn't show CMB properties beyond that period until the light comes from beyond that range. *(20)" It's difficult to know the density, polarization, and some other properties in the regions beyond the observable universe to make theories based on them. If the Big Bang continued to distant regions, perhaps those CMBs may show a universal polarization. The universe could be many sets of energies like many Planck energies $\left(\mathrm{n} \times 1.22 \times 10^{\wedge} 19 \mathrm{GeV}\right)$. General Relativity and entropy can't explain the size of it. The dipole anisotropy of the CMB and anomalies like the Great Attractor lead us to think about island universes, etc. Earth in an island universe could burn in a series of Cosmic Heat, causing disasters like Permian-Triassic extinction.
11.6.) The early interactions made a few compressed structures like different strengths of the compressions, capable of making many compact objects like a chain of many compressions. And there are 4 higher compression ratios (1-mid:2, 1:2-last, 1-last:2, 0:3-all) like matter compression in Stars, White Dwarfs, Neutron Stars, and Black Holes.
11.7.) Mass (m) becomes Energy (E) as $\mathrm{E}=\mathrm{mc}^{\wedge} 2$. But if the speed of light depends on the density of vacuum space (dvs), it would impact the speed like this: 'the speed of photons' / 'the density of space' = 'c^2' / '(dvs)^2'. The mass density of space is most likely equal to this: 'Mass of space in a Planck volume' / Planck volume. We can apply the mass density of space ((Mass in Planck space) $/ \ell \mathrm{p}^{\wedge} 3$) into the $\mathrm{E}=\mathrm{mc}^{\wedge} 2$ equation to show the connection between the speed of light and the density of space. If we write the mass in a Planck volume like this $\mathrm{Mps} / \ell \mathrm{p}^{\wedge} 3$, we can find the energy like this: $\mathrm{E}=$ $\mathrm{m}\left(\mathrm{c}^{\wedge} 2 /\left(\mathrm{Mps} / \ell \mathrm{p}^{\wedge} 3\right)^{\wedge} 2\right)$. There are $\mathrm{kg}^{\wedge}-1 \mathrm{~m}^{\wedge} 8 \mathrm{~s}^{\wedge}-2$ units in that energy equation. The kg unit in energy turned into $\mathrm{kg}^{\wedge}-1$. Momentum is related to Mass, but the momentum (p) in the $E=p c$ equation doesn't represent Mass. So perhaps, the Energy per Kilogram ($\mathrm{kg}^{\wedge}-1$) unit with $\mathrm{m}^{\wedge} 8 \mathrm{~s}^{\wedge}-2$ units represents the fundamental (quantum) units in energy better than $\mathrm{kg} \mathrm{m}^{\wedge} 2 \mathrm{~s}^{\wedge}-2$ units. $\mathrm{c}=299792458 \mathrm{~ms}^{\wedge}-1, \ell \mathrm{p}^{\wedge} 3=4.2217 \times 10^{\wedge}-105 \mathrm{~m}^{\wedge} 3$
$\mathrm{E}=\mathrm{m}\left(\mathrm{c}^{\wedge} 2 /\left(\mathrm{Mps} / \ell \mathrm{p}^{\wedge} 3\right)^{\wedge} 2\right)$ OR $((\mathrm{p}+\mathrm{mv}) / \mathrm{v})\left(\mathrm{c}^{\wedge} 2 /\left(\mathrm{Mps} / \ell \mathrm{p}^{\wedge} 3\right)^{\wedge} 2\right)$
$\mathrm{E}=\mathrm{m}\left(\left(\mathrm{c}^{\wedge} 2 /\left(\mathrm{Mps} / 4.2217 \times 10^{\wedge}-105\right)^{\wedge} 2\right)==\mathrm{mc}^{\wedge} 2\right.$
$\left.\left(1 \times 4.2217 \times 10^{\wedge}-105\right)^{\wedge} 2\right) / \operatorname{Mps}^{\wedge} 2==1$
$\mathrm{Mps}^{\wedge} 2=\left(4.2217 \times 10^{\wedge}-105\right)^{\wedge} 2$
The current mass of vacuum space in a Planck volume: $\mathrm{Mps}= \pm \mathbf{4 . 2 2 1 7 \times 1 0}{ }^{\wedge}-\mathbf{1 0 5} \mathbf{~ k g}$
But, based on the accelerating expansion of the universe, the calculated mass density of the vacuum is about 6.5 ± 0.5 $\times 10^{\wedge}-27 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$. In that case, the vacuum mass/energy of space in a Planck volume $==\left(6.5 \pm 0.5 \times 10^{\wedge}-27\right) /\left(4.2217 \times 10^{\wedge}\right.$ $105)=1.54 \pm 1 \times 10^{\wedge}-132 \mathrm{~kg}$. It is not equal to the above Mps value of $4.2217 \times 10^{\wedge}-105 \mathrm{~kg}$. Perhaps, calculating the mass density of the vacuum space based on the accelerating expansion of the universe doesn't show its real value. Based on that energy equation, the minimum Planck mass in spacetime is the mass density in Planck space.

The Planck energy in space: $\mathrm{Eps}=\mathrm{m}\left(\left(\mathrm{c}^{\wedge} 2 /\left(\mathrm{Mps} / 4.2217 \times 10^{\wedge}-105\right)^{\wedge} 2\right)\right.$
Eps $=4.2217 \times 10^{\wedge}-105 \times\left(\left(89875517873681760 /\left(4.2217 \times 10^{\wedge}-105 / 4.2217 \times 10^{\wedge}-105\right)^{\wedge} 2\right)\right.$
Eps $=4.2217 \times 10^{\wedge}-105 \times 89875517873681760=\mathbf{3 . 7 9 4 2 7 4 7 3 8} \times \mathbf{1 0}{ }^{\wedge} \mathbf{- 8 8} \mathbf{~ k g}{ }^{\wedge} \mathbf{- 1} \mathbf{~ m} \mathbf{~}^{\wedge} \mathbf{s}^{\wedge} \mathbf{- 2}$
Kg is like the Spin dimension. There are 11 dimensions ($\mathrm{kg}^{\wedge}-1 \mathrm{~m}^{\wedge} 8 \mathrm{~s}^{\wedge}-2: 1+8+2=11$) in that quantum unit of energy. The energy/mass in elementary particles/waves is related to their frequency. Perhaps, the mass represents a complex quantum process in frequency. The wave function in the Schrödinger equation is a complex (unexplained) function. And quantum field theory uses complex/imaginary numbers (E.g., $\sqrt{ } 2$) to get real solutions. So possibly, the most fundamental (super quantum) nature of frequency/energy is based on sets of linear dimensions (linear kg , m , s units).

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 9, Issue 2, pp: (74-96), Month: October 2021 - March 2022, Available at: www.researchpublish.com
If $m=0$, and $E=((p+m v) / v) c^{\wedge} 2 /\left(M p s / \ell p^{\wedge} 3\right)^{\wedge} 2$, then $E=(p / v) c^{\wedge} 2 /\left(M p s / \ell p^{\wedge} 3\right)^{\wedge} 2$. If $v=c$, then $E=p c /\left(M p s / \ell p^{\wedge} 3\right)^{\wedge} 2$. If momentum is almost equal to zero $(p=0)$, then $E=m c^{\wedge} 2 /\left(\mathrm{Mps} / \ell p^{\wedge} 3\right)^{\wedge} 2$. But $\mathrm{Mps} / \ell \mathrm{p}^{\wedge} 3= \pm 1 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$, so $\mathrm{E}==\mathrm{mc}^{\wedge} 2$. If Energy $(E)=\mathrm{kg}^{\wedge}-1 \mathrm{~m}^{\wedge} 8 \mathrm{~s}^{\wedge}-2$, then it must be consistent with the other units. There are extra dimensions in that energy. Also, there are extra dimensions in Volt as kg. $\mathrm{m}^{\wedge} 2 . \mathrm{s}^{\wedge}-3 \cdot \mathrm{~A}^{\wedge}-1$. The Ampere (A) is the base unit of electric current. $\mathrm{V}=$ $J . A^{\wedge}-1 \cdot s^{\wedge}-1$. The Joule $\left(J=k g \cdot m^{\wedge} 2 . s^{\wedge}-2\right)$ is a derived unit of energy. Hence, if the Volt $(V)=\mathrm{kg}^{\wedge}-1 \mathrm{~m}^{\wedge} 8 \mathrm{~s}^{\wedge}-2$, then $\mathrm{kg}^{\wedge}-1$ $\mathrm{m}^{\wedge} 8 \mathrm{~s}^{\wedge}-2=\mathrm{J} \cdot \mathrm{A}^{\wedge}-1 . \mathrm{s}^{\wedge}-1=\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2 \cdot \mathrm{~s}^{\wedge}-2 \cdot \mathrm{~A}^{\wedge}-1 \cdot \mathrm{~s}^{\wedge}-1$.
$\mathrm{kg}^{\wedge}-1 \mathrm{~m}^{\wedge} 8 \mathrm{~s}^{\wedge}-2=\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2 \cdot \mathrm{~s}^{\wedge}-2 . \mathrm{A}^{\wedge}-1 . \mathrm{s}^{\wedge}-1$
$\mathrm{A}=\mathrm{kg} \cdot \mathrm{m}^{\wedge} 2 . \mathrm{s}^{\wedge}-3 \times \mathrm{kg} \cdot \mathrm{m}^{\wedge}-8 . \mathrm{s}^{\wedge} 2=\mathbf{k g}{ }^{\wedge} \mathbf{2} \cdot \mathbf{m}^{\wedge} \mathbf{- 6} . \mathbf{s}^{\wedge} \mathbf{- 1}$
If the Ampere $(A)=\operatorname{kg}^{\wedge} 2 \cdot m^{\wedge}-6 \cdot s^{\wedge}-1$, then $\mathrm{kg}^{\wedge}-1 \mathrm{~m}^{\wedge} 8 \mathrm{~s}^{\wedge}-2$ units for Energy become consistent with the other units.
11.8.) Assume there is more space beyond our island universe. If so, the galaxies should move to balance the density between island universes. The entire universe can expand its edge equally or faster than light without reversing (0 to ∞). But the beginnings at the edge of the whole universe can make density/matter in some areas and a time delay in them, making them big. Likely, space is a stable form of mass, and mass continues in space as matter and a process. Gravity changes the density of space in matter areas and beyond them. And the death of gravity can collapse space.

REFERENCES

[1] Book, titled: 'Finding The Entanglement Of Binary Mathematical Structures Of The Elementary Ghosts'. Subtitle: "Finding The Theory Of Everything with Entangled Time Dimensions". Publisher: Independent Publisher (Author) in the publishing platform on Amazon.com website.
[2] Quantum Foam, Don Lincoln, Fermilab, 2014-10-24. Wheeler, J. A. ‘Geons'. Physical Review. 97 (2): 511-536.
[3] "Quantum fluctuations can jiggle objects on the human scale". phys.org. Retrieved 15-8-2020
[4] Higgs, P. (1964). "Broken Symmetries and the Masses of Gauge Bosons". Review Letters. 13 (16): 508-509.
[5] The Origin of Matter - Suddhāṭ̣haka: puredhamma.net/abhidhamma/the-origin-of-matter-suddhatthaka (Article)
[6] Rupa (Material Form) - Table: puredhamma.net/tables-and-summaries/rupa-material-form (Article)
[7] Cetasika (Mental Factors): puredhamma.net/tables-and-summaries/cetasika-mental-factors (Article)
[8] PDF, Yong, Bhikshu Jin. "How Large is One Asamkhyeya": drbachinese.org/vbs/publish/462/vbs462p042.pdf
[9] Rupa Kalāpa: puredhamma.net/tables-and-summaries/rupa-kalapas-grouping-of-matter (Grouping of Matter. Article). Related Abhidhamma teachings (Basics, Charts, Audios, etc.): abhidhamma.com
[10] The Thirty-one Planes of Existence: accesstoinsight.org/ptf/dhamma/sagga/loka.html (Article)
[11] "The Power of the Mind". HuffPost. 22 October 2009. Retrieved 15 October 2017: huffingtonpost.com/ellen-sterling/the-power-of-the-mind-lio_b_278488.html (Article)
[12] Buddhism, "Sahasra Cosmology". Book, Buddhist Cosmology: Science and Theology in the Images of Motion and Light: books.google.lk/books?id=6QbvIDk3cJQC. Fire (Thejo), Water (Āpo), Air (Vāyo) Sanvatta. End Of The World: kalpavinasayaorendoftheworld.blogspot.com/2016/01/the-end-of-world-or-kalpa-vinasaya.html
[13] Buddhism, DN27 Aggañña Sutta. Nyanatiloka. "kappa". Tipitaka (Drei-Korb), der Pali Kanon des TheravādaBuddhismus. Retrieved 7 May 2015.: palikanon.com/english/wtb/g_m/kappa.htm.Science Magazine (PDF), Loeb, Abraham (November 2006). "The Dark Ages of the Universe" (PDF). Scientific American. Vol. 295 no. 5. pp. 4653. doi:10.1038/scientificamerican1106-46
[14] Schrödinger equation. Double-slit experiment. Probability Amplitudes
[15] "Between every three world systems, there is one world interval, which is like the space in the middle of three cart wheels or petals placed so that they touch one another." - Anguttara Nikaya
[16] Journal paper, titled: "Evidence for spatial variation of the fine structure constant." arxiv.org/abs/1008.3907.
[17] The Buddha: "If you count the total number of sand particles at the depths of the Ganges river, from where it begins to where it ends at the sea, even that number will be less than the number of passed Kalpas." - Epstein, Ronald (2003): The Buddhist Text Translation Society."Imagine a huge empty cube at the beginning of a Kalpa, approximately 16 miles in each side. Once every 100 years, you insert a tiny mustard seed into the cube. According to the Buddha, the huge cube will be filled even before the Kalpa ends."-What are Kalpas?. Lion's Roar. 12-14-2016
[18] Lecture (Video), "Q\&A - Quantum Fields: The Real Building Blocks of the Universe - with David Tong": youtube.com/watch?v=QUMeKDlgKmk (between 12-14 minutes). Feb 15, 2017.
[19] Lecture (Video), "The Theory of Everything | Two Prototype Theories of Everything" - Dr. Don Lincoln: youtube.com/watch?v=6tUZsxjkXBc (between 28-29 minutes). Jul 5, 2017.
[20] If atoms were formed at once when $\mathrm{kT} \sim 13.6 \mathrm{eV}$, how are there around a billion CMB photons for every baryon?

ACKNOWLEDGEMENT

The sources of funding for this project: As an entrepreneur, I could spend my income and time on this project. Conflict of interest: I (author) declare no competing interests.

Open Researcher and Contributor ID (CV/Bio-data): https://orcid.org/0000-0002-0572-8055
Digital Object Identifier (DOI): Updated file (22-02-2022): http://dx.doi.org/10.13140/RG.2.2.19917.15841/6
Institution: Lanka E-World Technologies |Email: info@ranrahas.com / smlanka.lk @ gmail.com
Signature: Date: 22-02-2022

